Well written essays
Wednesday, August 26, 2020
Religion and International Relations Research Paper
Religion and International Relations - Research Paper Example Despite the fact that the idea of religion is as old as humankind, it is fascinating to take note of that policymakers and administrators have boundlessly disregarded the jobs of religion in the administration of a country and even universal relations. The faction between the East and West has expanded by twofold on account of this very explanation that they neglect to consolidate religion in their exchange, leaving no space for individuals from these two unique universes to associate (Fox and Sandler 2010, p. 2). The substance of this exposition won't just look at the significance of religion in universal connection as talked about considering insightful speculations however it will likewise examine the strategies through which they can use to incorporate religion and use it to make an increasingly amicable society. In spite of the fact that religion has been utilized on various occasions in political setting, yet in spite of its continuous use it is difficult to put down this wonde r in to an appropriate definition. Religion is regularly observed as a lot of thoughts or ideas that are immeasurably nullified by logical examination and are seen to be unreasonable (Philpot et.al 2009). Religion is generally accepted to be nonsensical, which underlines the negative notions against this organization. Nonetheless, unfortunately not every person particularly in the Eastern circle concurs with that thought which ends up being the primary wellspring of contention. This is on the grounds that Religion is liable for molding perspectives; as referenced prior, since religion establishes culture it is additionally a piece of an individualââ¬â¢s character. Religion is likewise used to legitimize fundamental human rights and political procedures. Also, most religions have changed into gigantic associations, similar to the Catholic Church there is an additional strain to conciliate and incorporate religions (Fox and Sandler 2010, p.2). Indeed, even verifiably there is a sol id tie between relationship among's country and religion is that it is the thing that helped the individuals identify with each other. It was a coupling power as it united individuals and helped them outline directly from wrong. Strict perspectives prompted foundations on different notions and legends, and with the rising ubiquity of science, it just started more discussions and individuals got careful about religion, yet with fear based oppressor assaults the estimations turned out to be progressively unfriendly towards the possibility of religion. Anyway the contention is activated in light of the fact that the vast majority of the insightful work done on the issue is tremendously done from Western-driven point of view and which is the reason this obtrusive ethnocentricism in strict perspectives has additionally extended the contention. Be that as it may, as the general public turns out to be increasingly more socially different and even mindful, there is an additional weight on s pecialists to consider according to the protected provision that qualifies each person for the right to speak freely of discourse, articulation and practices. The most terrible actuality is that as a result of the disputable idea of the point, religion is pretty much rewarded as a frowned upon subject. The cutting edge dismissal as per Fox and Sandler (2010, p. 10) originates from the marks of disgrace joined with religion that is fanatic, radical and in reverse. There is a requirement for increasingly open discourse regarding the matter and an expansion in writing from each of the three sides; which is the ace religion side, the counter religion and one from an impartial point of view. Policymaking is a urgent undertaking as people need to consider various requirements of the individuals and religion turns out to be significantly a greater amount of embodiment as 9/11 however there are a lot of contention existing in present day that are activated by or has it s base in religion, w hich will be talked about in later pieces of the exposition. The case
Saturday, August 22, 2020
Math Essay
Toward the finish of every unit, DB investment will be evaluated dependent on both degree of commitment and the nature of the commitment to the conversation. At any rate, every understudy will be relied upon to post a unique and insightful reaction to the DB address and add to the week after week discourse by reacting to at any rate two different posts from understudies. The principal commitment must be posted before 12 PM (Central Time) on Wednesday of every week. Two extra reactions are required after Wednesday of every week. Understudies are profoundly urged to connect on the Discussion Board early and frequently, as that is the essential way the college tracks class participation and cooperation. The reason for the Discussion Board is to permit understudies to learn through sharing thoughts and encounters as they identify with course content and the DB question. Since it is beyond the realm of imagination to expect to take part in two-manner discourse after a discussion has finished, no presents on the DB will be acknowledged after the finish of every week. A grandma is searching for an arrangement to fund her new grandchildââ¬â¢s school instruction. She has $50,000 to contribute. Search the web and find a long-go speculation plan, CD, Savings Bond, and so on, for the grandma. The arrangement is to procure progressive accrual. Figure the future estimation of the venture. You should utilize the publicized loan fee, the quantity of exacerbating periods every year, and the time the assets will be contributed. In the event that you are not given the quantity of exacerbating periods a year, make it up. 1. The chief is $50,000. This is P. 2. Research the yearly loan fee for your venture. This is r. 3. Express the time in years for the speculation (as in when the new grandkid will go to school). This is t. 4. Express the quantity of intensifying periods every year. This is n. 5. Model the future estimation of Grandmaââ¬â¢s venture as an exponential capacity, with time as the free factor: F(t) = P(1 + r/n) nt 6. Express the future estimation of Grandmaââ¬â¢s speculation. 7. Utilize the web or library assets to locate the normal expense of an advanced degree today; will grandmaââ¬â¢s venture have the option to take care of the expense in todayââ¬â¢s dollars; shouldn't something be said about later on? 8. Sum up your discoveries recorded as a hard copy utilizing legitimate style and language structure. 9. Incorporate references designed by APA style. 10. React to a classmateââ¬â¢s posting. On the off chance that you think there might be a blunder, don't hesitate to help your cohort without giving the right answer. Something else, break down the post in contrast with yours or add new data to the conversation. In your own words, if it's not too much trouble present a reaction on the Discussion Board and remark on different postings. You will be reviewed on the nature of your postings. For help with your task, if you don't mind utilize your content, Web assets, and all course materials. |
Monday, August 17, 2020
¡Es-pa-ña!
¡Es-pa-ña! So. I know a lot of you reading this are Americans, which means that the word football means a sport played neither with feet nor anything resembling a normally shaped ball. But, to the rest of the world, football is what we call soccer. And to Europe, its been the focus of everyones attention lately. Why? Because this summer, the EuroCup was played (which only happens every 4 years). Only one country emerged victorious. And which country was that? =D Spain hadnt even made it past the Eurocups qualifying rounds in something like 20 years, so people around here were pretty excited even to make it to the quarter finals. I watched all but one of the games- either in bars with friends or in La Plaza de Colón, where they put up huge TV screens so that thousands of people could watch the games at once. On the day of the final, I made plans with my friend Martin to meet him and his family to watch the game. On my way to meet them, I passed through Colón to see how excited everyone was. Heres a view from behind of the giant screens: .and the thousands of people getting psyched 2 hours BEFORE the game: I even took some video of the pregame celebrations for your enjoyment. I met up with my friend Martin and we watched the game in a bar/restaurant place. Our waitress served our taps while singing Spanish football songs. After Spain won (seriously, the actual game is so not the point here, its all about the partying afterwards) Martin and his family headed home, because they live out in the suburbs and actually have to take an hour bus ride away from the city. I got on the metro, but didnt take it all the way home. That would be silly. There was so much partying going on! I got out at Velazquéz, two stops away from Colón, where I knew there would be thousands of people starting to make their way to Plaza de la Cibeles, where the real party would happen. (Dont ask me how I know these things, okay, Im just trying to integrate myself into a culture hereahem) When I got out of the metro I was a little disoriented at first, because Id never gotten out at that stop before. But, being the smart MIT student that I am, I thought, well look, the street is absolutely FULL of people all walking in the same direction. Obviously they are leaving the game, so I just need to walk in the opposite direction to get to Colón, which is the way I need to go to get home from here anyway. So I pulled out my camera again and started taking some video of the reveling that was going on. After a block or so I paused. I was pretty sure that I should have made it to Colón by then. Besides, there are these 2 huge towers in the plaza that should be visible from a few blocks away, and they didnt seem to be ahead of me. And *then* it dawned on me. How STUPID Id been. These thousands of people flocking through the streets of Madrid were obviously pouring out of their homes and local bars to go TO the huge party in Colón and Cibeles (nevermind that it was 11 PM on a Sunday). Duh! So, I turned around and started walking with the huge crowd of red and yellow. Colón was much more desserted than I expected (ha), since I had wasted so much time walking in the wrong direction, most of the people had made their way to Cibeles. And THAT was were the party was. It was basically just like when Boston won the World Series only like a HUNDRED TIMES BIGGER. Absolutely insanity. Thousands and thousands of people, wearing Spanish flags, their faces and bodies painted red and yellow, blasting noisemakers, screaming, singing, chanting, using their flags to bullfight with oncoming traffic (I found this absolutely hilarious).The roads werent even officially closed (except in Cibeles), but everyone just walked in the street anyway. And no one cared, because the traffic was part of the celebration too- passengers waved flags out of the windows and drivers honked their horns in time with the thousands of people chanting. Heres another video for your enjoyment- there are 8 clips compiled together. According to Google maps, you are about to enjoy a 2.2 km tour of the party through Madrids main roads. (Dots on the map indicate roughly where the video was taken. The clip from Calle de Alcalá is actually looking back at Cibeles, so you can see just how many people where there. Its incredible.) Enjoy. =) Keep in mind this is all after 11 PM on a Sunday! I got back to my apartment around 1 AM and logged on Skype. Spanish friend: a por ellos oeee! a por ellos oeee! Me: .what? Spanish friend: its a typical chant Spanish friend: (i think i am a little drunk) Me: is *that* what all these people have been singing? Me: does it mean anything? Spanish friend: not really Me: ok, I feel better now Spanish friend: is like beat them up Spanish friend: or something like that The next morning, the office was desserted. Of the ten people who sit nearest me, at least 5 never showed up. The ones who were there were blissfully happy, smiling all day for no real reason, despite their hangovers. I picked a good summer to live in Madrid. =)
Sunday, May 24, 2020
Funny Quotations About Paying Taxes
Like it or not, you have to pay your taxes. The trouble is that understanding taxation requires more than a genius mind. Even Albert Einstein admitted, The hardest thing in the world to understand is the income tax. So, if its that time of year when youre drowning in reams of paperwork and trying to make sense of all the mumbo-jumbo, its time to take a break. Read these funny tax quotes over a cup of coffee and share a laugh with someone wholl appreciate the humor. If the caffeine doesnt work, these tax quotes will surely perk you up. Amusing Taxation Quotes Throughout History Mark TwainThe only difference between a tax man and a taxidermist is that the taxidermist leaves the skin. Will RogersIt is a good thing that we do not get as much government as we pay for. James MadisonI cannot undertake to lay my finger on that article of the Constitution which granted a right to Congress of expending, on objects of benevolence, the money of their constituents... Will RogersAlexander Hamilton started the U.S. Treasury with nothing and that was the closest our country has ever been to being even. Robert A. HeinleinThere is no worse tyranny than to force a man to pay for what he does not want merely because you think it would be good for him. Arthur GodfreyI am proud to be paying taxes in the United States. The only thing is I could be just as proud for half of the money. H. L. MenckenUnquestionably, there is progress. The average American now pays out twice as much in taxes as he formerly got in wages. Albert Einstein[on filing for tax returns] This is too difficult for a mathematician. It takes a philosopher. John S. ColemanThe point to remember is that what the government gives it must first take away. Herman WoukIncome tax returns are the most imaginative fiction being written today. Dr. Laurence J. PeterAmerica is a land of taxation that was founded to avoid taxation. Milton FriedmanCongress can raise taxes because it can persuade a sizable fraction of the populace that somebody else will pay. John Maynard KeynesThe avoidance of taxes is the only intellectual pursuit that carries any reward. Winston ChurchillThere is no such thing as a good tax. Will RogersThe income tax has made more liars out of the American people than golf has. Plato When there is an income tax, the just man will pay more and the unjust less on the same amount of income. Albert EinsteinThe hardest thing in the world to understand is the income tax. Benjamin TuckerTo force a man to pay for the violation of his own liberty is indeed an addition of insult to injury. Will RogersThe difference between death and taxes is death doesnt get worse every time Congress meets. Ronald ReaganThe taxpayer: thats someone who works for the federal government, but doesnt have to take a civil service examination. Robert A. HeinleinBe wary of strong drink. It can make you shoot at tax collectors... and miss. Winston ChurchillWe contend that for a nation to try to tax itself into prosperity is like a man standing in a bucket and trying to lift himself up by the handle. G. Gordon LiddyA liberal is someone who feels a great debt to his fellow man, which debt he proposes to pay off with your money. Barry GoldwaterThe income tax created more criminals than any other single act of government. Calvin CoolidgeCollecting more taxes than is absolutely necessary is legalized robbery. Dan BennettTheres nothing wrong with the younger generation that becoming taxpayers wont cure. Martin A. SullivanThere may be liberty and justice for all, but there are tax breaks only for some. Jewish ProverbTaxes grow without rain. Thomas Jefferson The same prudence which in private life would forbid our paying our own money for unexplained projects forbids it in the dispensation of the public monies. Robert DoleThe principle involved here is time-honored and true: and that is its your money. Robert DoleThe purpose of a tax cut is to leave more money where it belongs: in the hands of the working men and working women who earned it in the first place.à Rob KnauerhaseIsnt it appropriate that the month of the tax begins with April Fools Day and ends with cries of May Day!? Roger JonesI guess I think of lotteries as a tax on the mathematically challenged. Jean-Baptiste ColbertThe art of taxation consists in so plucking the goose as to obtain the largest amount of feathers with the least amount of hissing. Benjamin Franklin, ââ¬â¹Poor Richards Almanacââ¬â¹It would be a hard government that should tax its people one-tenth part of their income.
Wednesday, May 13, 2020
Wednesday, May 6, 2020
The Impact of Ict on Tertiary Education Free Essays
string(64) " some possible directions to further stimulate its development\." The impact of ICT on tertiary education : advances and promises Kurt Larsen and Stephan Vincent-Lancrin Organisation for Economic Co-operation and Development (OECD) Directorate for Education / Centre for Educational Research and Innovation* DRAFT OECD/NSF/U. Michigan Conference ââ¬Å"Advancing Knowledge and the Knowledge Economyâ⬠10-11 January 2005 Washington DC ABSTRACT: The promises of e-learning for transforming tertiary education and thereby advancing the knowledge economy have rested on three arguments: E-learning could expand and widen access to tertiary education and training; improve the quality of education; and reduce its cost. The paper evaluates these three promises with the sparse existing data and evidence and concludes that the reality has not been up to the promises so far in terms of pedagogic innovation, while it has already probably significantly improved the overall learning (and teaching) experience. We will write a custom essay sample on The Impact of Ict on Tertiary Education or any similar topic only for you Order Now Reflecting on the ways that would help develop e-learning further, it then identifies a few challenges and highlights open educational resource initiatives as an example of way forward. The first section of the paper recalls some of the promises of e-learning; the second compares these promises and the real achievements to date and suggests that e-learning could be at an early stage of its innovation cycle; the third section highlights the challenges for a further and more radically innovative development of e-learning. Knowledge, innovation and Information and Communication Technologies (ICTs) have had strong repercussions on many economic sectors, e. g. the informatics and communication, finance, and transportation sectors (Foray, 2004; Boyer, 2002). What about education? The knowledge-based economy sets a new scene for education and new challenges and promises for the education sector. Firstly, education is a prerequisite of the knowledge-based economy: the production and use of new knowledge both require a more (lifelong) educated population and workforce. Secondly, ICTs are a very powerful tool for diffusing knowledge and information, a fundamental aspect of the education process: in that sense, they can play a pedagogic role that could in principle complement (or even compete with) the traditional practices of the education sector. These are the two challenges for the education sector: continue to expand with the help (or under the pressure) of new forms of learning. Thirdly, ICTs sometimes induce innovations in the ways of doing things: for example, navigation does not involve the same cognitive processes since the Global Positioning System (GPS) was invented (e. g. Hutchins, 1995); scientific research in many fields has also been revolutionised by the new possibilities offered by ICTs, from digitisation of information to new recording, simulation and data processing possibilities (Atkins and al. , 2003). Could ICTs similarly revolutionise education, especially as education deals directly with the codification and transmission of knowledge and information ââ¬â two activities which power has been decupled by the ICT revolution? The education sector has so far been characterised by rather slow progress in terms of innovation development which impact on teaching activities. Educational research and development does not play a strong role as a factor of enabling the direct production of systematic knowledge which translates into ââ¬Å"programmes that worksâ⬠in the classroom or lecture hall (OECD, 2003). As a matter of fact, education is not a field that lends itself easily to experimentation, partly because experimental approaches in education are often impossible to describe in precisely enough to be sure that they are really being replicated (Nelson, 2000). There is little codified knowledge in the realm of education and only weak developed mechanisms whereby communities of faculty collectively can capture and benefit from the discoveries made by their colleagues. Moreover, learning typically depends on other learning inputs than those received in the class or formal education process: the success of learning depends on many social and family aspects that are actually beyond the control of educators. Information and communication technologies potentially offer increased possibilities for codification of knowledge about teaching and for innovation in teaching activities through being able to deliver learning and cognitive activities anywhere at any time. Learning at a distance can furthermore be more learner-centred, self-paced, and problem solving-based than face-to-face teaching. It is also true, however, that many learning activities cannot be coordinated by virtual means only. The emulation and spontaneity generated by physical presence and social groupings often remain crucial. Likewise, face-to-face exchanges are important when they enable other forms of sensory perception to be stimulated apart from these used within the framework of electronic interaction. However, the influence of distance and time is waning now that the technological capacity is available for knowledge-sharing, remote access and teamwork, and organising and coordinating tasks over wide areas (OECD, 2004a). Focusing on tertiary education, this paper examines the promises of ICTs in the education sector, first as a way to better participate in the advancement of the knowledge economy, second as a way to introduce innovations. Leaving aside the impact of ICTs on the research or e-science performed by tertiary education institutions (see Atkins and al. 2003; David, 2004), we concentrate on e-learning, broadly understood as the use of ICTs to enhance or support learning and teaching in (tertiary) education. E-learning is thus a generic term referring to different uses and intensities of uses of ICTs, from wholly online education to campus-based education through other forms of distance education supplemented with ICTs in some way. The supplementary model would encompass a ctivities ranging from the most basic use of ICTs (e. g. use of PCs for word processing of assignments) through to more advanced adoption (e. g. pecialist disciplinary software, handheld devices, learning management systems etc. ). However, we keep a presiding interest in more advanced applications including some use of online facilities. Drawing on the scarce existing evidence, including a recent survey on e-learning in post-secondary institutions carried out by the OECD Centre for Educational Research and Innovation (CERI), it shows that e-learning has not yet lived up to its promises, which were overstated in the hype of the new economy. ICT have nonetheless had a real impact on the education sector, inducing a quiet rather than radical revolution. Finally, it shows some possible directions to further stimulate its development. You read "The Impact of Ict on Tertiary Education" in category "Essay examples" The remainder of the paper is organized as follows: the first section recalls some of the promises of e-learning; the second compares these promises and the real achievements to date and suggests that e-learning could be at an early stage of its adoption cycle; the third section highlights the challenges for a further development of e-learning and shows what directions might be the most promising for its further development. I. Advancing knowledge and the (knowledge) economy: the promises of e-learning The emergence of ICTs represents high promises for the tertiary education sector (and, more broadly, the post-secondary education sector if one takes into account their impact on non-formal education). ICTs could indeed play a role on three fundamental aspects of education policy: access, quality and cost. ICTs could possibly advance knowledge by expanding and widening access to education, by improving the quality of education and reducing its cost. All this would build more capacity for the advancement of knowledge economies. This section summarises the main arguments backing the promises. E-learning is a promising tool for expanding and widening access to tertiary education. Because they relax space and time constraints, ICTs can allow new people to participate in tertiary education by increasing the flexibility of participation compared to the traditional face-to-face model: working students and adults, people living in remote areas (e. . rural), non-mobile students and even foreign students could now more easily participate in education. Thanks to ICT, learners can indeed study where and/or when they have time to do soââ¬ârather than where and/or when classes are planned. While traditional correspondence-based distance learning has long played this role, ICT have enhanced traditional distance education enabled the rise of a continuum of practices between fully campus-based education and fully distance education. More specifically, fully online learning can allow large numbers of students to access education. The constraints of the face-to-face learning experience, that is, the size of the rooms and buildings and the students/teacher ratio, represents another form of relaxation of space constraints. ICTs indeed allow a very cheap cost of reproduction and communication of a lesson, via different means like the digital recording and its (ulterior or simultaneous) diffusion on TV, radio or the Internet. The learning process or content can also be codified, and at least some parts be standardised in learning objects, for example a multimedia software, that can in principle be used by millions of learners, either in a synchronous or asynchronous way. Although both forms might induce some loss in terms of teachers-learners interactivity compared to face to face teaching, they can reach a scale of participation that would be unfeasible via face-to-face learning. When the needs are huge, fully online learning can be crucial and possibly the only realistic means to increase and widen rapidly access to tertiary education. Some developing countries have huge cohorts of young people and too small an academic workforce to meet their large unmet demand: given training new teachers would take too much time, notwithstanding resources, e-learning might represent for many potential students and learners the only chance to study (rather than an alternative to full face-to-face learning) (World Bank, 2003). E-learning can also be seen as a promising way for improving the quality of tertiary education and the effectiveness of learning. These promises can be derived from different characteristics of ICTs: the increased flexibility of the learning experience it can give to students; the enhanced access to information resources for more students; the potential to drive innovative and effective ways of learning and/or teaching, including learning tools, easier use of multimedia or simulation tools; finally, the possibility to diffuse these innovations at very low marginal cost among the teachers and learners. Distance E-learning has not only the virtue to be inclusive for students that cannot participate in tertiary education because of time, space or capacity constraints, as it was shown above. It can also in principle offer to students more personalised ways of learning than collective face-to-face learning, even in small groups. Although learning is often personalised to some extent in higher education through the modularity of paths, ICTs allow institutions to give students to choose a wider variety of learning paths than in non-ICT supplemented institutions ââ¬â not the least because of the administrative burden this would represent in large institutions. This means that students can experiment learning paths that best suit them. Moreover, e-learning can potentially allow students to take courses from several institutions, e. . some campus-based and others fully online. This possible flexibility of individual curricula can be seen as an improvement of the overall student experience, regardless of pedagogical changes. In one word, e-learning could render education more learner-centred compared to the traditional model. A prestigious university generally has a sizeable library gathering tons of codified information and knowledge. One of the most visible impact of ICTs is to give easier and almost instant access to data and information in a digital form that allows manipulations that are sometimes not otherwise possible. The digitisation of information, from academic journals through to books and class notes, can change (and has changed) the life of students by giving them easy access to educational resources, information and knowledge, as well as new data processing possibilities. But e-learning could also lead to the enhancement of quality in tertiary education by leading to innovative pedagogic methods, new ways of learning and interacting, by the easy sharing of these new practices among learners and teachers communities, as well as by more transparency and easier comparisons and cross-fertilisation of teaching materials and methods. Finally, e-learning can be seen as a promising way to reduce the cost of tertiary education, which is critical for expanding and widening its access worldwide. It might thus represent new opportunities for students having ifficulties with this traditional format. Although ICT investments are expensive, they can then generally be used at near-zero marginal cost. Where would this cost-efficiency come from: the replacement of expensive brick and mortar campuses by virtual campuses; the digitisation of library materials that would save the cost of keeping huge paper collections; the improvement of efficiency of institutional manage ment; the automation of some of the traditional on-campus activities, including some teaching. II. Living up to the promises: a quiet rather than radical revolution Has e-learning (and especially online learning) lived up to the promises outlined in the previous section? It has to some extent. The reality of e-learning has never matched its most radical promises (Zemsky and Massy, 2004): while experiments are still underway, the initial stage of over-enthusiasm has ended when new economy bubble burst about 2002. In this respect, e-learning has followed the ups and down of the new economy and given rise to the same caveats as in other sectors: irrational beliefs about its market value, over-investment, over-capacity, and more announces than services really launched (Boyer, 2002). Like other activities, e-learning has not proven yet its ability to generate high profits or to replace the old economy of learning. However, interpreting this as a failure of e-learning would however over-simplify the reality and could be seen as ââ¬Å"throwing the baby with the bath waterâ⬠. While, perhaps unsurprisingly, e-learning has not led to the radical revolution in tertiary education that was sometimes prophesised, some of its forms are already pervasive in tertiary education and have already led to a quiet revolution. Its modesty should not lead to overlook it. This section gives a overiew of the limited evidence we have about the adoption of e-learning in tertiary education. E-learning adoption The radical innovation view was that fully online learning would progressively supersede traditional face-to-face learning and represent a competitive threat for traditional tertiary educational institutions. To some extent, this belief has been a reason for the creation of new ventures and for established institutions to enter this new market: early adopters ould indeed possibly gain a brand name and a serious competitive advantage in the new market. The reality is that, while sometimes successfully experimented, fully online learning has remained a marginal form of e-learning and often not even the ultimate goal or rationale for e-learning adoption. However, this does not mean that e-learning in other forms has not gained significant ground over the past decade in tertiary education: there is indeed some evidence of a noticeable growth of e-learning adoption both on demand and supply sides. One must bear in mind that e-learning encompasses a wide range of activities. Following the terminology used in the CERI survey (OECD, 2005), we distinguish between different levels of online learning adoption as follows, from the less to the most intensive form of e-learning: ?None or trivial online presence; ?Web supplemented: the Web is used but not for key ââ¬Å"activeâ⬠elements of the programme (e. g. course outline and lecture notes online, use of email, links to external online resources) without any reduction in classroom time; ? Web dependent: Students are required to use the Internet for key ââ¬Å"activeâ⬠elements of the programmeââ¬âe. g. online discussions, assessment, online project/ collaborative workââ¬âbut without significant reduction in classroom time. ?Mixed mode: Students are required to participate in online activities, e. g. online discussions, assessment, online project/collaborative work, as part of course work, which replace part of face-to-face teaching/learning. Significant campus attendance remains. Fully online: the vast bulk of the programme is delivered online with typically no (or not significant) campus attendance or through ââ¬Å"learning objectsâ⬠. What do we know about the major trends in the adoption of e-learning by institutions and students? First, e-learning has grown steadily in the last decade, at a relatively rapid pace, but from a very low starting pointââ¬âand for some activities: from scratch. The lack of comprehensive data renders these trends di fficult to document, but existing surveys all point to the same direction of an increasing activity/supply. A significant share of tertiary education institutions have developed some e-learning activities and strategies and believe in the critical importance of e-learning for their long term strategy. The 2003 Sloan Survey of Online Learning based on a sample of 1 000 US institutions shows that only 19% of US institutions have no advanced e-learning activities ââ¬â that is web dependent, mixed mode or fully online courses (Allen and Seman, 2003). The remainding 81% offer at least one course based on those advanced e-learning activities. Second, this growth of e-learning under all its forms should continue in the near future. There is indeed a converging evidence that tertiary education institutions consider as part of their future development strategy. In the Sloan survey, less than 20% of the US tertiary education institutions considered online education as not critical to their long term strategy. Similarly, data from the first international survey by the Observatory on Borderless Higher Education (OBHE) revealed that of the 42 UK institutions that responded (out of a total population of ca. 06), 62% had developed or were developing an online learning strategy and most had done so since 2000 (OBHE, 2002). The second survey undertaken in 2004, 79% of the 122 universities from the Commonwealth countries responding to the survey had an institution-wide ââ¬Å"online learningâ⬠strategy as such or integrated into other strategies (46%) or under development (33%). Only 9% of these institutions had no e-learning st rategy in place or under development in 2004 . While these figures may reflect some self-selection in the respondents, they unambiguously show a significant adoption or willingness to adopt some form of e-learning in the coming future. Although reflecting different levels of adoption of e-learning, all post-secondary institutions participating in the CERI survey on e-learning point to the same direction and report plans to increase their level of online delivery or to maintain their already high levels (OECD, 2005). Third, virtual universities are not likely to become the paradigm of tertiary education institutions. While it will most likely continue to grow, especially in distance institutions (see below), no evidence point towards a predominance of this form of e-learning in the near future in tertiary education. While the mixed mode of learning blending online and on-campus courses now clearly appears as a better candidate, institutions head towards the simultaneous offer of a variety of learning models. For understandable reasons, only few campus-based institutions (that is the bulk of post-secondary institutions) seem to aim at delivering a large share of their courses fully online or at becoming virtual. While some institutions participating in the CERI survey are at the avant-garde of e-learning, no campus-based institution predicted to deliver more than 10% of its total programmes fully online within three years (OECD, 2005). In the US, rather than offering only fully online courses (16%) or only mixed mode courses (10%), most institutions offer both fully online and blended courses; moreover, the majority (67%) of academic leaders believe that mixed mode and web dependent courses hold more promise than fully online, against only 14% having the opposite view (Allen and Seaman, 2003). This clearly reflects what we know about the main rationales for undertaking e-learning. The OBHE surveys show that on-campus enhancement of teaching and learning (1st) and improved flexibility of delivery for on-campus students (2nd) are the two key rationales in institutional strategies of e-learning. Only 10% of the institutions considered the enhancement of distance learning as more important than on-campus enhancement. Interestingly, the level of importance granted to distance or fully online learning decreased between 2002 and 2004 among returning respondents. Distance or fully online learning remains the fifth most important rationale though (OBHE, 2002, p. 4). Finally, while a generalisation of the fully online model is not probable for tertiary education overall, at least in the medium run, this does not mean that fully online activities are not growing rapidly nor that the fully online learning model gains ground at distance education institutions (Bates, 1995). To our knowledge, no data on fully online enrolments are available for other countries than the United States. According to the 2003 Sloan survey, more than 1. 6 million students (i. e. 11% of all US tertiary-level students) took at least one fully online course during the Fall 2002 and about one third of them, that is 578 000 students, took all their courses online. For example, the University of Phoenix, the largest university in the United States in terms of enrolments, has for example 60 000 of its 140 000 students online. The enrolments of fully online students in the United States were forecasted to increase by about 20% between 2002 and 2003, to 1. 9 million studentsââ¬âa projection that proved to be accurate according to the 2004 Sloan survey (Allen and Seaman, 2003, 2004). This growth rate, which is projected estimated at 25% for 2005 is much higher than the growth rate of total tertiary enrolments in the United States. From a low starting point, fully online learning is growing at a rapid pace, even if it is merely as a complement to face-to-face or mixed mode learning. Moreover, fully online learning is clearly very important for distance institutions. In the CERI survey, the institutions willing to embrace fully online learning to the greatest extent were all virtual/distance learning only institutions (or branches) (OECD, 2005). In conclusion, e-learning seems to live up to its promises in terms of flexibility and possibly access. It is a growing activity that has for example significantly widened the participation in tertiary education of foreign students (OECD, 2004). Does e-learning improve the quality of tertiary education? The real impact of e-learning on the quality of education is difficult to measure. E-learning largely embodies two promises: improving education thanks to improved learning and teaching facilities; inventing and sharing new ways of learning thanks to ICTs, that is a new specific pedagogic techniques. While the first promise is by and large becoming a reality, at least in OECD countries, the second appears further from reach. Viewed mainly as an enhancement of on-campus education, and thus matching the reality depicted in the previous section, there is some evidence that e-learning has improved the quality of the educational experience on both faculty and students sides (not to mention enhancement of administrative management). All institutions participating in the CERI survey reported a ââ¬Å"positive impactâ⬠of greater use of e-learning in all its forms on teaching and learning. The quality of education (with or without e-learning) is very difficult to measure, not the least because learning depends on studentsââ¬â¢ motivation, abilities and other conditions (e. g. amily, social, economic, health backgrounds) as much as on the quality of teaching. However, the reasons explaining this positive impact on quality largely lives up to the promises of e-learning to offer more flexibility of access to learners, better facilities and resources to study, and new opportunities thanks to the relaxation o f space and time constraints. Basically, they do not correspond to a significant change in class pedagogy, but to a change in the overall learning experience. According to the institutions, the main drivers or components of this positive impact come from: â⬠¢facilitated access to international faculty/peers, e. . with the possibility of online lectures or joint classes with remote students; â⬠¢flexible access to materials and other resources, allowing students to revise a particular aspect of a class, giving more access flexibility to part-time students, or giving remote and easy access to the library materials; â⬠¢enhancement of face-to-face sessions, as the availability of archived lectures online frees up faculty time to focus on difficult points and application and because the introduction of e-learning has sometimes led to a debate on pedagogy; â⬠¢improved communication between faculty and students and increase of peer learning; This ââ¬Å"positive impactâ⬠on the overall learning experience is, alone, a significant achievement of e-learning, even though it has not radically transformed the learning and teaching processes. The quality of fully online learning is a more controversial question, possibly because online learning was once viewed as possibly become of higher quality than on-campus education (possibly including e-learning as already mentioned). Comparing the quality (or the beliefs about the quality) of fully online learning against traditional distance learning, traditional face-to-face learning or other mixed modes of e-learning might not yield the same results: fully online learning is indeed more readily comparable to distance learning than to on-campus education. While institutions having adopted e-learning have generally a positive view of its possible impact on quality, there is little convincing evidence about the superior or inferior quality of fully online learning compared to other modes of tertiary education. Another question is whether fully online learning has entailed innovation in pedagogy or just replicated with other means the face-to-face experience. As noted above, ICTs could indeed entail pedagogic innovations and help create a community of knowledge among faculty, students and learning object developers that would codify and capitalise over successful innovation in pedagogy. At this stage, there is no evidence that e-learning has yielded any radical pedagogic innovation. The most successful fully online courses generally replicate virtually the classroom experience via a mix of synchronous classes and asynchronous exchanges. Arguably, they have not represented a dramatic pedagogical change. We will see below that in spite of worthwhile experiments, learning objects and open educational resources are still in their infancy. They hold promises for educational innovation though. The cost of e-learning Has e-learning lived up its promises in terms of cost-efficiency? Here again, not if one looks at the most radical promises: as noted above, virtual universities have not replaced brick and mortars and saved the cost of expensive building investments and maintenance; digital libraries have supplemented rather than replaced physical ones; the codification and standardisation of teaching in a way that would allow less faculty or less qualified academics has not become the norm, nor have new online learning objects been invented to replace faculty altogether; finally, it has become clear that there was no once-for-all ICT investments and that the maintenance and upgrading costs of ICT facilities were actually important, contrary to the marginal cost of then replicating and diffusing information. Moreover, cost-efficiency has for many universities been a secondary goal compared to the challenge of developing innovative and high quality e-learning courses at many tertiary education institutions. Although the anking of cost-efficiency has increased betwe en 2002 and 2004 by 16%, 37% of respondents considered ââ¬Å"cutting teaching costs long-termâ⬠as a key rationale in the OBHE survey (OBHE, 2004)ââ¬âa small percentage compared to the two key rationales (over 90% of responses). Again, most universities consider e-learning materials and courses as a supplement to traditional class-room or lecture activities rather than a substitute. The predominance of web dependent and mixed modes of e-learning makes the assessment of the costs and benefits of e-learning investments more difficult to evaluate as they become part of the on-campus experience. It is striking that the institutions participating in the CERI survey on e-learning had no systematic data on their e-learning costs (OECD, 2005). In this context, and after the burst of the dot. om economy bubble that put out of business many e-learning operations (many never really started their operations though), identifying sustainable cost-efficient models for e-learning investme nts in tertiary education has become critical. There are examples of cost-efficient models ââ¬Å"outsideâ⬠the traditional colleges and universities though. Virtual tertiary education institutions as e. g. the Catalonia Virtual University have a cost advantage as they are developing e-learning material from scratch and not ââ¬Å"building ontoâ⬠a physical camp. The Open University in the UK which is gradually moving from a traditional distance learning courses using books, video cassettes, and CD-ROMs to online courses has reported that their costs per student are one third of the average cost for similar on-campus programmes in the UK. Fixed capital costs are lower and it is easier to align staffing structures to e-learning processes than at ââ¬Å"traditionalâ⬠universities. The e-learning activities of Phoenix University, which is a private for-profit university mainly for adult students, is also seen as cost-effective. Its business model is based on ââ¬Å"standardised teachingâ⬠, relatively small on-line class size, and use of proven low-tech e-learning technologies (inducing lower costs than more sophisticated technologies). Much of the faculty staff at Phoenix University is often hired part time and having jobs at other tertiary education institutions, which often implies that staff development costs are lower at Phoenix University than other tertiary education institutions. E-learning investments in tertiary education can be cost-effective, but it depends on the business model, the profile and number of students and topics (cost-effectiveness has been demonstrated in some cases in large undergraduate science classes (Harley, 2003), and initial development costs. The calculations also depend on whether student opportunity costs are taken into account. The initial costs for e-learning development are often high (e. g. infrastructure, creating course material from scratch, experimentation, new kind of staff/units, immature technologies, etc. ). In order to ensure that e-learning investments are cost efficient, e-learning activities may need to substitute parts of the on-campus teaching activities (rather than duplication). Educational innovations, like learning objects, could for example allow supporting the re-use and sharing of e-learning materials. Although data is lacking on cost-efficiency, at this stage there is little evidence that e-learning has led to more cost efficiency in tertiary education. Failures have been more numerous than success stories, although the latter document the possible sustainability of e-learning. The adoption of ICTs for administrating tertiary education institutions has probably been the main source of cost efficiency in the tertiary sector, like in other economic sectors. Conclusion: the e-learning adoption cycles So, has e-learning lived up to its promises? This is probably true as far as it holds promises for incremental improvement, including an increased access and quality of the learning experienceââ¬âa kind of change whose importance should not be underestimated. As for radical innovation, the answer is rather: not yet. So far, e-learning has induced a quiet rather than a radical revolution of tertiary education. Perhaps e-learning will follow the same development path in tertiary education as other innovations that first begin with experiments, then expand to a group of early adopters before becoming commonplace. Zemsky and Massy (2004) have proposed a possible ââ¬Å"e-learning innovationââ¬â¢s S-curveâ⬠divided into four distinctive but often overlapping adoption cycles that help understand the current development of e-learning, and, possibly, its future challenges. The cycles include: )Enhancements to traditional course/program configurations, which inject new materials into teaching and learning processes without c hanging the basic mode of instruction. Examples include e-mail, student access to information on the Internet, and the use of multimedia (e. g. PowerPoint) and simple simulations; 2)Use of course management systems, which enable faculty and students to interact more efficiently (e. g. Blackboard or WebCT). They provide better communication with and among students, quick access to course materials, and support for administrating and grading examinations; 3)Imported course objects, which enable the faculty to embed a richer variety of materials into their courses than is possible with traditional ââ¬Å"do it yourselfâ⬠learning devices. Examples range from compressed video presentations to complex interactive simulations including the increased use of ââ¬Å"learning objectsâ⬠; 4)New course/program configurations, which result when faculty and their institutions reengineer teaching and learning activities to take full advantage of new ICTs. The new configurations focus on active learning and combine face-to-face, virtual, synchronous, and asynchronous interaction and learning in novel ways. They also require faculty and students to adopt new roles ââ¬â with each other and with the technology and support staff. The overview of current e-learning adoption shows that most tertiary education institutions in OECD countries can largely be located in cycles one and/or two. These first two cycles have largely built upon and reinforced one another. However, they have not fundamentally changed the way teaching and learning is pursued at the large majority of institutions. Their momentum has not automatically transferred to either increasing use and dissemination of learning objects or to the use of new course/program configurations (e-learning cycles three and four). Cycles 3 and 4 correspond to changes remodelling more radically teaching and learning. While some experimentations underway give us some idea of where they could head, they are still in their infancy. The third cycle corresponds to the creation of ââ¬Å"learning objectsâ⬠that can potentially offer an efficient approach to the development of e-learning materials (i. e. reduced faculty time, lower cost, higher quality materials), although many issues remain (e. g. opyright, lack of incentives for faculty to create, the range of actors in and ââ¬Ëlocationââ¬â¢ of the creative process, lack of standardisation and interoperability of e-learning software). The learning objects model implies material/course development that departs from the ââ¬Å"craft-modelâ⬠where the indivi dual professor is responsible for the majority of work. Instead it is a model where the course is assembled largely by or from third-party material. Besides the technical and organisational challenges of developing learning objects, there are also considerable pedagogical challenges using them. Some argue that learning is so contextually based that the breaking up of the learning experience into defined objects is destructive for the learning process. Evidence from the Open Learning Initiative at the Carnegie Mellon University suggests that effective e-learning courses are often facilitated by having a ââ¬Ëthemeââ¬â¢ that runs throughout the course, which might be difficult to obtain with the notion of decontextualised learning objects (Smith and Thille, 2004). Therefore, much more research and development is needed to ensure pedagogical effectiveness of the learning objects model. For faculty members to rely on others for their material will also need a cultural change as it would probably often be considered today as demonstrating ââ¬Å"inferiorityâ⬠. Wide use of learning objects in tertiary education will therefore only occur if major changes in working habits and attitudes of faculty are possible. The development of learning objects is very much in its initial phase. This is illustrated by the use of the public available learning objects repositories as e. g. MERLOT (Multimedia Educational Resource for Learning and Online Teaching). The basic idea behind the MERLOT repository was to create a readily available, low-cost, web-based service to which experimenters could post their learning objects and from which interested practitioners could rate and download objects for use in their courses. While there has been a tremendous growth in the number of learning objects made available by MERLOT, there has been very little interest to use what other colleagues had made available and consequently little effort in terms of rating othersââ¬â¢ learning objects. This can however be seen as the first steps towards the construction of knowledge communities in education. Despite the premature stage of learning objects and the large number of obstacles to overcome, some standard form of learning objects will probably emerge and gain importance in the development of e-learning in tertiary education as well as in other education sectors. Very few institutions have reached the fourth e-learning adoption cycle at an institution wide scale. There are however institutions which are clearly experimenting with new ways of using ICTs that change the traditional organisation and pedagogy of tertiary education. One such example is the previously mentioned Open Learning Initiative at the Carnegie Mellon University. The use of cognitive and learning sciences to produce high quality e-learning courses into online learning practices is at the core of this initiative (Smith and Thille, 2004). As there is no generic e-learning pedagogy, the aim is to design as ââ¬Å"cognitive informedâ⬠e-learning courses as possible. The establishment and implementation procedures for routine evaluation of the courses and the use of formative assessment for corrections and iterative improvements are part of the e-learning course development. The development of the e-learning courses often rely on teamwork including faculty from multiple disciplines, web designers, cognitive scientists, project managers, learning designers, and evaluators. The key question for any project like the Open Learning Initiative attempting a combination of open access to free content, and a fee-for-service model for students using the courses in a degree granting setting is its sustainability. This initiative could not have been realised without significant voluntary contributions from private foundations and a major research grant from the National Science Foundation to start the Pittsburgh Science of Learning Center. The next section will address the challenges for the adoption of these third and fourth adoption cycles. III. Challenges for the further development of e-learning in tertiary education: what sustainable innovation model? The aim of this final section is to identify and reflect on some of the key issues that would need to be considered in a systematic way for e-learning to develop further and become a deeper driver of innovation in tertiary education. If the vast majority of colleges and universities are to embrace the third and fourth e-learning adoption cycles, a sustainable innovation and investment model will have to be developed. A first challenge lies indeed in the development of sustainable e-learning innovation models which go beyond using e-learning as an add-on to traditional forms of teaching and learning in tertiary education but rather invent new, useful and better pedagogic innovations partly substituting traditional face-to-face teaching. This will require a broad willingness of these institutions to search for new combinations of input of faculty, facilities and technology and new ways of organising their teaching activities. A second challenge lies in the development of a realistic model for investment in e-learning that would stimulate the participation of faculty and other stakeholders and be financially sustainable, which is not straightforward given that there is little systematic knowledge on the real costs and benefits of e-learning investments in tertiary education. However, like for ICT investments in other sectors, the cost-effectiveness of e-learning investments will depend on whether new organisational and knowledge management practices are adopted. It might indeed be more difficult to provide the ââ¬Å"softerâ⬠social, organisational and legal changes in tertiary education than the technological infrastructures necessary to fully embrace the advantages of e-learning. This section emphasises partnerships and networks as a possible way forward for further investment, product development and innovation diffusion in e-learning. There are many examples where tertiary education institutions seek to share the costs of e-learning development through partnerships and networking. Partnership and network building are also useful for having access to new knowledge, to learn from others experience and exchange information about the latest developments in e-learning and they can involve many different organisations as e. g. traditional colleges and universities, virtual universities, libraries, for-profit ICT and training companies from different sectors etc. These activities can range from sharing material, joint technology and software development, joint research and development, joint marketing, joint training, connectivity, etc. and can be sub-national, national and international (OECD, 2004b; Cunningham and al. , 2000). After showing the importance (and challenges) for universities to engaging their faculty in e-learning, we will turn to an innovative practice exemplifying the potential power of partnerships and networks: Open Educational Resources (OER). They will indeed most likely have significant implications for the way e-learning activities will develop over the coming years in tertiary education. Engaging universities and faculty in e-learning In most OECD countries the question is no longer whether or not tertiary education institutions should invest in e-learning. Because of the competition between institutions and student demand for easy access to courseware material and flexible learning environments, most tertiary education institutions willing to deliver quality teaching are bound to invest in e-learning. As we have seen, the large majority of institutions are now embracing e-learning adoption cycles one and two, which are basically about providing the students with better access to learning and course material and facilitating the electronic communication between students and teachers. Again, only very few institutions and faculty are however systematically exploring and producing re-usable learning material and objects (third cycle) or have taken full advantage of new ICTs with focus on active learning that combines face-to-face, virtual, synchronous, and asynchronous interaction and learning in novel ways (fourth cycle). The latter approach would require faculty and students to adopt new roles ââ¬â with each other and with the technology and support staff. While ICTs offer powerful new instruments for innovation, tertiary education institutions are generally decentralised institutions where individual faculty often has the sole responsibility for teaching courses and delivering course material. Adoption of the third and especially the fourth e-learning cycle would imply changing to more collaborative ways of organising and producing teaching material. Faculty members would in many cases have to collaborate with a whole range of new staff as e. g. course managers, web designers, instructional/pedagogical designers, cognitive scientist etc. to produce course material. This could lead to resistance from ââ¬Å"traditionalâ⬠faculty arguing that current teaching practices have proved its value for centuries and there is no need to change them to new pedagogical and teaching methods, which have hardly proven their efficiency yet. Moreover, promotion of faculty and funding allocations in universities are often linked to research activities rather than teaching activities, often seen as less prestigious. Faculty members have therefore often relatively few incentives to invest their time in e-learning activities. The adoption of new ways of teaching and learning at tertiary education institutions through ICTs can therefore create organisational conflicts and tensions. New organisational innovations, new knowledge management practices, and more team working are therefore necessary conditions for tertiary education institutions to be able to move to e-learning adoption cycles three and four. The CERI study on e-learning case studies in post-secondary education has identified a number of lessons learnt by institutions that are in the forefront of e-learning development (OECD, 2005): More strategic e-learning planning at the institutional or faculty level and to tie this to the overall goals of the institution is needed; â⬠¢A paradigm shift in the way academics think of university teaching would be necessary, e. g. a shift away from ââ¬Ëscepticism about the use of technologies in e ducationââ¬â¢ and ââ¬Ëteacher-centred cultureââ¬â¢ towards ââ¬Ëa role as a facilitator of learning processesââ¬â¢, ââ¬Ëteam workerââ¬â¢, and ââ¬Ëlearner-centred cultureââ¬â¢; â⬠¢Targeted e-learning training relevant for the facultyââ¬â¢s teaching programme as well as ownership of the development process of new e-learning material by academics is also necessary. There is no one-best-way or trajectory for e-learning development at tertiary education institutions. But it might prove more difficult to provide the ââ¬Å"softerâ⬠social, organisational and legal changes in tertiary education than provide the technological infrastructures necessary to fully embrace the advantages of e-learning (David, 2004). It will depend on a whole range of factors not necessarily related to the development of e-learning including: â⬠¢Changes in the funding of tertiary education and in particular e-learning funding; â⬠¢Student demography; â⬠¢Regulatory and legal frameworks; â⬠¢Competition between traditional tertiary education institution themselves and with new private providers; â⬠¢Internationalisation including the possibility of servicing foreign students living abroad; and not the least to the extent to which students will want to use the new opportunities for new and flexible ways of learning. Many tertiary education students would possibly prefer to have some kind of ââ¬Å"mixed modelâ⬠learning choice involving a whole range of different learning opportunities and forms combining face-to-face, virtual, synchronous, and asynchronous interaction and learning. A possible way forward: Open Educational Resources Open Educational Resources appear as a potentially innovative practice that gives a good example of the current opportunities and challenges offered by ICTs in order to trigger radical pedagogic innovations. Digitalisation and the potential for instant, low-cost global communication have opened tremendous new opportunities for the dissemination and use of learning material. This has spurred an increased number of freely accessible OER initiatives on the Internet including 1) open courseware ; 2) open software tools (e. g. learning management systems); 3) open material for capacity building of faculty staff ; 4) repositories of learning objects ; 5) and free educational e-learning courses. At the same time, there are now more realistic expectations of the commercial e-learning opportunities in tertiary education. The OER initiatives are a relatively new phenomenon in tertiary education largely made possible by the use of ICTs. The open sharing of oneââ¬â¢s educational resources implies that knowledge is made freely available on non-commercial terms sometimes in the framework of users and doers communities. In such communities the innovation impact is greater when it is shared: the users are freely revealing their knowledge and, thus work cooperatively. These communities are often not able to extract economic revenues directly from the knowledge and information goods they are producing and the ââ¬Å"sharingâ⬠of these good are not steered by market mechanisms. Instead they have specific reward systems often designed to give some kind of credit to inventors without exclusivity rights. In the case of open science, the reward system is collegial reputation, where there is a need to be identified and recognised as ââ¬Å"the one who discoveredâ⬠which gives incentives for the faculty to publish new knowledge quickly and completely (Dasgupta and David, 1994). The main motivation or incentive for people to make OER material available freely is that the material might be adopted by others and maybe even is modified and improved. Reputation is therefore also a key motivation factor in ââ¬Å"OER communitiesâ⬠. Being part of such a user community gives access to knowledge and information from others but it also implies that one has a ââ¬Å"moralâ⬠obligation to share oneââ¬â¢s own information. Inventors of OER can benefit from increased ââ¬Å"free distributionâ⬠or from distribution at very low marginal costs. A direct result of free revealing is to increase the diffusion of that innovation relative to conditions in which it is licensed or kept secret. If an innovation is widely used it would initiate and develop standards which could be advantageously used even by rivals. The Sakai project has, for example, an interest in making their open software tools available for many colleges and universities and have therefore set a relatively low entry amount for additional colleges and universities wishing to have access to the software tools that they are developing. The financial sustainability of OER initiatives is a key issue. Many initiatives are sponsored by private foundations, public funding or paid by the institutions themselves. In general, the social value of knowledge and information tools increases to the degree that they can be shared with and used by others. The individual faculty member or institution providing social value might not be able to sustain the costs of providing OER material freely on the Internet in the long term. It is therefore important to find revenues to sustain these activities. It might e. g. be possible to charge and to take copyrights on part of the knowledge and information activities springing out of the OER initiatives. Finding better ways of sharing and re-using e-learning material (see the previous mentioned discussion on learning objects) might also trigger off revenues. It is also important to find new ways for the users of OER to be ââ¬Å"advisedâ⬠of the quality of the learning material stored in open repositories. The wealth of learning material is enormous on the Internet and if there is little or no guidance of the quality of the learning material, users will be tempted to look for existing brands and known quality. There is no golden standard or method of identifying quality of learning material in tertiary education on the Internet as is the case with quality identification within tertiary education as a whole. The intentions behind the MERLOT learning object repository was to have the user community rating the quality and usability of the learning objects made freely available. In reality very few users have taken the time and effort to evaluate other learning objects. There is little doubt that the generic lack of a review process or quality assessment system is a serious issue and is hindering increased uptake and usage of OER. User commentary, branding, peer reviews or user communities evaluating the quality and usefulness of the OER might be possible ways forward. Another important challenge is to adapt ââ¬Å"global OER initiativesâ⬠to local needs and to provide a dialogue between the doers and users of the OER. Lack of cultural and language sensitivities might be an important barrier to the receptiveness of the users. Training initiatives for users to be able to apply course material and/or software might be a way to reach potential users. Also important will be the choice (using widely agreed standards), maintenance, and user access to the technologies chosen for the OER. There is a huge task in better understanding the users of OER. Only very few and hardly conclusive surveys on the users of OER are available . There is a high need to better understand the demand and the users of OER. A key issue is who owns the e-learning material developed by faculty. Is it the faculty or the institution? In many countries including the United States, the longstanding practice in tertiary education has been to allow the faculty the ownership of their lecture notes and classroom presentations. This practice has not always automatically been applied to e-learning course material. Some universities have adopted policies that share revenues from e-learning material produced by faculty. Other universities have adopted policies that apply institutional ownership only when the use of university resources is substantial (American Council of Education and EDUCAUSE, 2003). In any case, institutions and faculty groups must strive to maintain a policy that provides for the universityââ¬â¢s use of materials and simultaneously fosters and supports faculty innovation. It will be interesting to analyse how proprietary versus open e-learning initiatives will develop over the coming years in tertiary education. Their respective development will depend upon: How the copyright practices and rules for e-learning material will develop at tertiary education institutions; â⬠¢The extent to which innovative user communities will be built around OER initiatives; â⬠¢The extent to which learning objects models will prove to be successful; â⬠¢The extent to which new organ isational forms in teaching and learning at tertiary education institutions will crystallise; â⬠¢The demand for free versus ââ¬Å"fee-paidâ⬠e-learning material; â⬠¢The role of private companies in promoting e-learning investments etc. It is however likely that proprietary e-learning initiatives will not dominate or take over open e-learning initiatives or vice versa. The two approaches will more likely develop side by side sometimes in competition but also being able to mutually reinforce each other through new innovations and market opportunities. Conclusion There are many critical issues surrounding e-learning in tertiary education that need to be addressed in order to fulfil objectives such as widening access to educational opportunities; enhancing the quality of learning; and reducing the cost of tertiary education. E-learning is, in all its forms, a relatively recent phenomenon in tertiary education that has largely not radically transformed teaching and learning practices nor significantly changed the access, costs, and quality of tertiary education. As we have shown, e-learning has grown at a rapid pace and has enhanced the overall learning and teaching experience. While it has not lived up to its most ambitious promises to stem radical innovations in the pedagogic and organisational models of the tertiary education, it has quietly enhanced and improved the traditional learning processes. Most institutions are thus currently in the early phase of e-learning adoption, characterised by important enhancements of the learning process but no radical change in learning and teaching. Like other innovations, they might however live up to their more radical promises in the future and really lead to the inventions of new ways of teaching, learning and interacting within a knowledge community constituted of learners and teachers. In order to head towards these advances innovation cycles, a sustainable innovation and investment model will have to be developed. While a first challenge will be technical, this will also require a broad willingness of tertiary education institutions to search for new combinations of input of faculty, facilities and technology and new ways of organising their teaching activities. Like for ICT investments in other sectors, the cost-effectiveness of e-learning investments will depend on whether new organisational and knowledge management practices are adopted. Experiments are already underway that make us aware of these challenges, but also of the opportunities and lasting promises of e-learning in tertiary education. References Allen, I. E. and Seaman, J. (2003), Sizing the opportunity. The Quality and Extent of Online Education in the United States, 2002 and 2003, The Sloan Consortium. American Council on Education and EDUCAUSE (2003), Distributed Education: Challenges, Choices and a New Environment, Washington DC. Atkins, D. E. , Droegemeier, K. K. , Feldman, S. I. , Garcia-Molina, H. , Klein, M. L. , Messerschmitt, D. G. , Messina, P. , Ostriker, J. P. , Wright, M. H. , Final Report of the NSF Blue Ribbon Advisory Panel on Cyberinfrastructure, available at http://www. cise. nsf. gov/sci/reports/toc. cfm. February 2003. Bates, A. W. (1995), Technology, e-learning and Distance Education, Routledge, London/New York. Boyer, R. 2002), La croissance, debut de siecle. De lââ¬â¢octet au gene, Albin Michel, Paris; English translation: The Future of Economic Growth: As New Becomes Old, Edward Elgar, Cheltenham, UK, 2004. Cunningham, S. , Ryan, Y. , Stedman, L. , Tapsall, S. , Bagdon, S. , Flew, T. , Coaldrake, P. (2000), The Business of Borderless Education, Australian Department of Education, Training and Youth Affairs, Canberra. Dasgupta, P. and P. A. David (1994), ââ¬Å"Towards a New Economics of Scienceâ⬠, Research Policy, 23(5). David, P. A (2004), Toward a Cyberinfrastructure from Enhanced Scientific Collaboration: Providing its ââ¬ËSoftââ¬â¢ Foundations May be the Hardest Threat, Oxford Internet Institute. Foray, D. 2004), The Economics of Knowledge, MIT Press, Cambridge, USA. Harley, D. (2003), Costs, Culture, and Complexity: An Analysis of Technology Enhancements in a Large Lecture Course of UC Berkeley, Center for Studies in Higher Education. Paper CSHE3-03, Berkeley University. Hutchins, E. (1995), Cognition in the Wild, MIT Press, Cambridge, USA. Nelson, R. (2000), ââ¬Å"Knowledge and Innovation Systemsâ⬠, in OECD, Knowledge Management in the Learning Society, Paris. Observatory for Borderless Higher Education (2002), Online Learning in Commonwealth Universities ââ¬â Results from the Observatory 2002 Survey, Londo n. OECD (2003), New Challenges for Educational Research, OECD, Paris. OECD (2004a), Innovation in the Knowledge Economy ââ¬â Implications for Education and Learning, Paris. OECD (2004b), Internationalisation and Trade in Higher Education. Opportunities and Challenges, Paris. OECD (2005 forthcoming), E-learning Case Studies in Post-Secondary Education, Paris. Smith, J. M. and C. Thille (2004), The Open Learning Initiative ââ¬â Cognitively Informed e-learning, The Observatory on Borderless Higher Education, London. World Bank (2003), Constructing Knowledge Societies: New Challenges for Tertiary Education, The World Bank, Washington D. C. Zemsky, R. and W. F. Massy (2004), Thwarted Innovation ââ¬â What Happened to e-learning and Why, The Learning Alliance, Pennsylvania University. How to cite The Impact of Ict on Tertiary Education, Essay examples
The Impact of Ict on Tertiary Education Free Essays
string(64) " some possible directions to further stimulate its development\." The impact of ICT on tertiary education : advances and promises Kurt Larsen and Stephan Vincent-Lancrin Organisation for Economic Co-operation and Development (OECD) Directorate for Education / Centre for Educational Research and Innovation* DRAFT OECD/NSF/U. Michigan Conference ââ¬Å"Advancing Knowledge and the Knowledge Economyâ⬠10-11 January 2005 Washington DC ABSTRACT: The promises of e-learning for transforming tertiary education and thereby advancing the knowledge economy have rested on three arguments: E-learning could expand and widen access to tertiary education and training; improve the quality of education; and reduce its cost. The paper evaluates these three promises with the sparse existing data and evidence and concludes that the reality has not been up to the promises so far in terms of pedagogic innovation, while it has already probably significantly improved the overall learning (and teaching) experience. We will write a custom essay sample on The Impact of Ict on Tertiary Education or any similar topic only for you Order Now Reflecting on the ways that would help develop e-learning further, it then identifies a few challenges and highlights open educational resource initiatives as an example of way forward. The first section of the paper recalls some of the promises of e-learning; the second compares these promises and the real achievements to date and suggests that e-learning could be at an early stage of its innovation cycle; the third section highlights the challenges for a further and more radically innovative development of e-learning. Knowledge, innovation and Information and Communication Technologies (ICTs) have had strong repercussions on many economic sectors, e. g. the informatics and communication, finance, and transportation sectors (Foray, 2004; Boyer, 2002). What about education? The knowledge-based economy sets a new scene for education and new challenges and promises for the education sector. Firstly, education is a prerequisite of the knowledge-based economy: the production and use of new knowledge both require a more (lifelong) educated population and workforce. Secondly, ICTs are a very powerful tool for diffusing knowledge and information, a fundamental aspect of the education process: in that sense, they can play a pedagogic role that could in principle complement (or even compete with) the traditional practices of the education sector. These are the two challenges for the education sector: continue to expand with the help (or under the pressure) of new forms of learning. Thirdly, ICTs sometimes induce innovations in the ways of doing things: for example, navigation does not involve the same cognitive processes since the Global Positioning System (GPS) was invented (e. g. Hutchins, 1995); scientific research in many fields has also been revolutionised by the new possibilities offered by ICTs, from digitisation of information to new recording, simulation and data processing possibilities (Atkins and al. , 2003). Could ICTs similarly revolutionise education, especially as education deals directly with the codification and transmission of knowledge and information ââ¬â two activities which power has been decupled by the ICT revolution? The education sector has so far been characterised by rather slow progress in terms of innovation development which impact on teaching activities. Educational research and development does not play a strong role as a factor of enabling the direct production of systematic knowledge which translates into ââ¬Å"programmes that worksâ⬠in the classroom or lecture hall (OECD, 2003). As a matter of fact, education is not a field that lends itself easily to experimentation, partly because experimental approaches in education are often impossible to describe in precisely enough to be sure that they are really being replicated (Nelson, 2000). There is little codified knowledge in the realm of education and only weak developed mechanisms whereby communities of faculty collectively can capture and benefit from the discoveries made by their colleagues. Moreover, learning typically depends on other learning inputs than those received in the class or formal education process: the success of learning depends on many social and family aspects that are actually beyond the control of educators. Information and communication technologies potentially offer increased possibilities for codification of knowledge about teaching and for innovation in teaching activities through being able to deliver learning and cognitive activities anywhere at any time. Learning at a distance can furthermore be more learner-centred, self-paced, and problem solving-based than face-to-face teaching. It is also true, however, that many learning activities cannot be coordinated by virtual means only. The emulation and spontaneity generated by physical presence and social groupings often remain crucial. Likewise, face-to-face exchanges are important when they enable other forms of sensory perception to be stimulated apart from these used within the framework of electronic interaction. However, the influence of distance and time is waning now that the technological capacity is available for knowledge-sharing, remote access and teamwork, and organising and coordinating tasks over wide areas (OECD, 2004a). Focusing on tertiary education, this paper examines the promises of ICTs in the education sector, first as a way to better participate in the advancement of the knowledge economy, second as a way to introduce innovations. Leaving aside the impact of ICTs on the research or e-science performed by tertiary education institutions (see Atkins and al. 2003; David, 2004), we concentrate on e-learning, broadly understood as the use of ICTs to enhance or support learning and teaching in (tertiary) education. E-learning is thus a generic term referring to different uses and intensities of uses of ICTs, from wholly online education to campus-based education through other forms of distance education supplemented with ICTs in some way. The supplementary model would encompass a ctivities ranging from the most basic use of ICTs (e. g. use of PCs for word processing of assignments) through to more advanced adoption (e. g. pecialist disciplinary software, handheld devices, learning management systems etc. ). However, we keep a presiding interest in more advanced applications including some use of online facilities. Drawing on the scarce existing evidence, including a recent survey on e-learning in post-secondary institutions carried out by the OECD Centre for Educational Research and Innovation (CERI), it shows that e-learning has not yet lived up to its promises, which were overstated in the hype of the new economy. ICT have nonetheless had a real impact on the education sector, inducing a quiet rather than radical revolution. Finally, it shows some possible directions to further stimulate its development. You read "The Impact of Ict on Tertiary Education" in category "Essay examples" The remainder of the paper is organized as follows: the first section recalls some of the promises of e-learning; the second compares these promises and the real achievements to date and suggests that e-learning could be at an early stage of its adoption cycle; the third section highlights the challenges for a further development of e-learning and shows what directions might be the most promising for its further development. I. Advancing knowledge and the (knowledge) economy: the promises of e-learning The emergence of ICTs represents high promises for the tertiary education sector (and, more broadly, the post-secondary education sector if one takes into account their impact on non-formal education). ICTs could indeed play a role on three fundamental aspects of education policy: access, quality and cost. ICTs could possibly advance knowledge by expanding and widening access to education, by improving the quality of education and reducing its cost. All this would build more capacity for the advancement of knowledge economies. This section summarises the main arguments backing the promises. E-learning is a promising tool for expanding and widening access to tertiary education. Because they relax space and time constraints, ICTs can allow new people to participate in tertiary education by increasing the flexibility of participation compared to the traditional face-to-face model: working students and adults, people living in remote areas (e. . rural), non-mobile students and even foreign students could now more easily participate in education. Thanks to ICT, learners can indeed study where and/or when they have time to do soââ¬ârather than where and/or when classes are planned. While traditional correspondence-based distance learning has long played this role, ICT have enhanced traditional distance education enabled the rise of a continuum of practices between fully campus-based education and fully distance education. More specifically, fully online learning can allow large numbers of students to access education. The constraints of the face-to-face learning experience, that is, the size of the rooms and buildings and the students/teacher ratio, represents another form of relaxation of space constraints. ICTs indeed allow a very cheap cost of reproduction and communication of a lesson, via different means like the digital recording and its (ulterior or simultaneous) diffusion on TV, radio or the Internet. The learning process or content can also be codified, and at least some parts be standardised in learning objects, for example a multimedia software, that can in principle be used by millions of learners, either in a synchronous or asynchronous way. Although both forms might induce some loss in terms of teachers-learners interactivity compared to face to face teaching, they can reach a scale of participation that would be unfeasible via face-to-face learning. When the needs are huge, fully online learning can be crucial and possibly the only realistic means to increase and widen rapidly access to tertiary education. Some developing countries have huge cohorts of young people and too small an academic workforce to meet their large unmet demand: given training new teachers would take too much time, notwithstanding resources, e-learning might represent for many potential students and learners the only chance to study (rather than an alternative to full face-to-face learning) (World Bank, 2003). E-learning can also be seen as a promising way for improving the quality of tertiary education and the effectiveness of learning. These promises can be derived from different characteristics of ICTs: the increased flexibility of the learning experience it can give to students; the enhanced access to information resources for more students; the potential to drive innovative and effective ways of learning and/or teaching, including learning tools, easier use of multimedia or simulation tools; finally, the possibility to diffuse these innovations at very low marginal cost among the teachers and learners. Distance E-learning has not only the virtue to be inclusive for students that cannot participate in tertiary education because of time, space or capacity constraints, as it was shown above. It can also in principle offer to students more personalised ways of learning than collective face-to-face learning, even in small groups. Although learning is often personalised to some extent in higher education through the modularity of paths, ICTs allow institutions to give students to choose a wider variety of learning paths than in non-ICT supplemented institutions ââ¬â not the least because of the administrative burden this would represent in large institutions. This means that students can experiment learning paths that best suit them. Moreover, e-learning can potentially allow students to take courses from several institutions, e. . some campus-based and others fully online. This possible flexibility of individual curricula can be seen as an improvement of the overall student experience, regardless of pedagogical changes. In one word, e-learning could render education more learner-centred compared to the traditional model. A prestigious university generally has a sizeable library gathering tons of codified information and knowledge. One of the most visible impact of ICTs is to give easier and almost instant access to data and information in a digital form that allows manipulations that are sometimes not otherwise possible. The digitisation of information, from academic journals through to books and class notes, can change (and has changed) the life of students by giving them easy access to educational resources, information and knowledge, as well as new data processing possibilities. But e-learning could also lead to the enhancement of quality in tertiary education by leading to innovative pedagogic methods, new ways of learning and interacting, by the easy sharing of these new practices among learners and teachers communities, as well as by more transparency and easier comparisons and cross-fertilisation of teaching materials and methods. Finally, e-learning can be seen as a promising way to reduce the cost of tertiary education, which is critical for expanding and widening its access worldwide. It might thus represent new opportunities for students having ifficulties with this traditional format. Although ICT investments are expensive, they can then generally be used at near-zero marginal cost. Where would this cost-efficiency come from: the replacement of expensive brick and mortar campuses by virtual campuses; the digitisation of library materials that would save the cost of keeping huge paper collections; the improvement of efficiency of institutional manage ment; the automation of some of the traditional on-campus activities, including some teaching. II. Living up to the promises: a quiet rather than radical revolution Has e-learning (and especially online learning) lived up to the promises outlined in the previous section? It has to some extent. The reality of e-learning has never matched its most radical promises (Zemsky and Massy, 2004): while experiments are still underway, the initial stage of over-enthusiasm has ended when new economy bubble burst about 2002. In this respect, e-learning has followed the ups and down of the new economy and given rise to the same caveats as in other sectors: irrational beliefs about its market value, over-investment, over-capacity, and more announces than services really launched (Boyer, 2002). Like other activities, e-learning has not proven yet its ability to generate high profits or to replace the old economy of learning. However, interpreting this as a failure of e-learning would however over-simplify the reality and could be seen as ââ¬Å"throwing the baby with the bath waterâ⬠. While, perhaps unsurprisingly, e-learning has not led to the radical revolution in tertiary education that was sometimes prophesised, some of its forms are already pervasive in tertiary education and have already led to a quiet revolution. Its modesty should not lead to overlook it. This section gives a overiew of the limited evidence we have about the adoption of e-learning in tertiary education. E-learning adoption The radical innovation view was that fully online learning would progressively supersede traditional face-to-face learning and represent a competitive threat for traditional tertiary educational institutions. To some extent, this belief has been a reason for the creation of new ventures and for established institutions to enter this new market: early adopters ould indeed possibly gain a brand name and a serious competitive advantage in the new market. The reality is that, while sometimes successfully experimented, fully online learning has remained a marginal form of e-learning and often not even the ultimate goal or rationale for e-learning adoption. However, this does not mean that e-learning in other forms has not gained significant ground over the past decade in tertiary education: there is indeed some evidence of a noticeable growth of e-learning adoption both on demand and supply sides. One must bear in mind that e-learning encompasses a wide range of activities. Following the terminology used in the CERI survey (OECD, 2005), we distinguish between different levels of online learning adoption as follows, from the less to the most intensive form of e-learning: ?None or trivial online presence; ?Web supplemented: the Web is used but not for key ââ¬Å"activeâ⬠elements of the programme (e. g. course outline and lecture notes online, use of email, links to external online resources) without any reduction in classroom time; ? Web dependent: Students are required to use the Internet for key ââ¬Å"activeâ⬠elements of the programmeââ¬âe. g. online discussions, assessment, online project/ collaborative workââ¬âbut without significant reduction in classroom time. ?Mixed mode: Students are required to participate in online activities, e. g. online discussions, assessment, online project/collaborative work, as part of course work, which replace part of face-to-face teaching/learning. Significant campus attendance remains. Fully online: the vast bulk of the programme is delivered online with typically no (or not significant) campus attendance or through ââ¬Å"learning objectsâ⬠. What do we know about the major trends in the adoption of e-learning by institutions and students? First, e-learning has grown steadily in the last decade, at a relatively rapid pace, but from a very low starting pointââ¬âand for some activities: from scratch. The lack of comprehensive data renders these trends di fficult to document, but existing surveys all point to the same direction of an increasing activity/supply. A significant share of tertiary education institutions have developed some e-learning activities and strategies and believe in the critical importance of e-learning for their long term strategy. The 2003 Sloan Survey of Online Learning based on a sample of 1 000 US institutions shows that only 19% of US institutions have no advanced e-learning activities ââ¬â that is web dependent, mixed mode or fully online courses (Allen and Seman, 2003). The remainding 81% offer at least one course based on those advanced e-learning activities. Second, this growth of e-learning under all its forms should continue in the near future. There is indeed a converging evidence that tertiary education institutions consider as part of their future development strategy. In the Sloan survey, less than 20% of the US tertiary education institutions considered online education as not critical to their long term strategy. Similarly, data from the first international survey by the Observatory on Borderless Higher Education (OBHE) revealed that of the 42 UK institutions that responded (out of a total population of ca. 06), 62% had developed or were developing an online learning strategy and most had done so since 2000 (OBHE, 2002). The second survey undertaken in 2004, 79% of the 122 universities from the Commonwealth countries responding to the survey had an institution-wide ââ¬Å"online learningâ⬠strategy as such or integrated into other strategies (46%) or under development (33%). Only 9% of these institutions had no e-learning st rategy in place or under development in 2004 . While these figures may reflect some self-selection in the respondents, they unambiguously show a significant adoption or willingness to adopt some form of e-learning in the coming future. Although reflecting different levels of adoption of e-learning, all post-secondary institutions participating in the CERI survey on e-learning point to the same direction and report plans to increase their level of online delivery or to maintain their already high levels (OECD, 2005). Third, virtual universities are not likely to become the paradigm of tertiary education institutions. While it will most likely continue to grow, especially in distance institutions (see below), no evidence point towards a predominance of this form of e-learning in the near future in tertiary education. While the mixed mode of learning blending online and on-campus courses now clearly appears as a better candidate, institutions head towards the simultaneous offer of a variety of learning models. For understandable reasons, only few campus-based institutions (that is the bulk of post-secondary institutions) seem to aim at delivering a large share of their courses fully online or at becoming virtual. While some institutions participating in the CERI survey are at the avant-garde of e-learning, no campus-based institution predicted to deliver more than 10% of its total programmes fully online within three years (OECD, 2005). In the US, rather than offering only fully online courses (16%) or only mixed mode courses (10%), most institutions offer both fully online and blended courses; moreover, the majority (67%) of academic leaders believe that mixed mode and web dependent courses hold more promise than fully online, against only 14% having the opposite view (Allen and Seaman, 2003). This clearly reflects what we know about the main rationales for undertaking e-learning. The OBHE surveys show that on-campus enhancement of teaching and learning (1st) and improved flexibility of delivery for on-campus students (2nd) are the two key rationales in institutional strategies of e-learning. Only 10% of the institutions considered the enhancement of distance learning as more important than on-campus enhancement. Interestingly, the level of importance granted to distance or fully online learning decreased between 2002 and 2004 among returning respondents. Distance or fully online learning remains the fifth most important rationale though (OBHE, 2002, p. 4). Finally, while a generalisation of the fully online model is not probable for tertiary education overall, at least in the medium run, this does not mean that fully online activities are not growing rapidly nor that the fully online learning model gains ground at distance education institutions (Bates, 1995). To our knowledge, no data on fully online enrolments are available for other countries than the United States. According to the 2003 Sloan survey, more than 1. 6 million students (i. e. 11% of all US tertiary-level students) took at least one fully online course during the Fall 2002 and about one third of them, that is 578 000 students, took all their courses online. For example, the University of Phoenix, the largest university in the United States in terms of enrolments, has for example 60 000 of its 140 000 students online. The enrolments of fully online students in the United States were forecasted to increase by about 20% between 2002 and 2003, to 1. 9 million studentsââ¬âa projection that proved to be accurate according to the 2004 Sloan survey (Allen and Seaman, 2003, 2004). This growth rate, which is projected estimated at 25% for 2005 is much higher than the growth rate of total tertiary enrolments in the United States. From a low starting point, fully online learning is growing at a rapid pace, even if it is merely as a complement to face-to-face or mixed mode learning. Moreover, fully online learning is clearly very important for distance institutions. In the CERI survey, the institutions willing to embrace fully online learning to the greatest extent were all virtual/distance learning only institutions (or branches) (OECD, 2005). In conclusion, e-learning seems to live up to its promises in terms of flexibility and possibly access. It is a growing activity that has for example significantly widened the participation in tertiary education of foreign students (OECD, 2004). Does e-learning improve the quality of tertiary education? The real impact of e-learning on the quality of education is difficult to measure. E-learning largely embodies two promises: improving education thanks to improved learning and teaching facilities; inventing and sharing new ways of learning thanks to ICTs, that is a new specific pedagogic techniques. While the first promise is by and large becoming a reality, at least in OECD countries, the second appears further from reach. Viewed mainly as an enhancement of on-campus education, and thus matching the reality depicted in the previous section, there is some evidence that e-learning has improved the quality of the educational experience on both faculty and students sides (not to mention enhancement of administrative management). All institutions participating in the CERI survey reported a ââ¬Å"positive impactâ⬠of greater use of e-learning in all its forms on teaching and learning. The quality of education (with or without e-learning) is very difficult to measure, not the least because learning depends on studentsââ¬â¢ motivation, abilities and other conditions (e. g. amily, social, economic, health backgrounds) as much as on the quality of teaching. However, the reasons explaining this positive impact on quality largely lives up to the promises of e-learning to offer more flexibility of access to learners, better facilities and resources to study, and new opportunities thanks to the relaxation o f space and time constraints. Basically, they do not correspond to a significant change in class pedagogy, but to a change in the overall learning experience. According to the institutions, the main drivers or components of this positive impact come from: â⬠¢facilitated access to international faculty/peers, e. . with the possibility of online lectures or joint classes with remote students; â⬠¢flexible access to materials and other resources, allowing students to revise a particular aspect of a class, giving more access flexibility to part-time students, or giving remote and easy access to the library materials; â⬠¢enhancement of face-to-face sessions, as the availability of archived lectures online frees up faculty time to focus on difficult points and application and because the introduction of e-learning has sometimes led to a debate on pedagogy; â⬠¢improved communication between faculty and students and increase of peer learning; This ââ¬Å"positive impactâ⬠on the overall learning experience is, alone, a significant achievement of e-learning, even though it has not radically transformed the learning and teaching processes. The quality of fully online learning is a more controversial question, possibly because online learning was once viewed as possibly become of higher quality than on-campus education (possibly including e-learning as already mentioned). Comparing the quality (or the beliefs about the quality) of fully online learning against traditional distance learning, traditional face-to-face learning or other mixed modes of e-learning might not yield the same results: fully online learning is indeed more readily comparable to distance learning than to on-campus education. While institutions having adopted e-learning have generally a positive view of its possible impact on quality, there is little convincing evidence about the superior or inferior quality of fully online learning compared to other modes of tertiary education. Another question is whether fully online learning has entailed innovation in pedagogy or just replicated with other means the face-to-face experience. As noted above, ICTs could indeed entail pedagogic innovations and help create a community of knowledge among faculty, students and learning object developers that would codify and capitalise over successful innovation in pedagogy. At this stage, there is no evidence that e-learning has yielded any radical pedagogic innovation. The most successful fully online courses generally replicate virtually the classroom experience via a mix of synchronous classes and asynchronous exchanges. Arguably, they have not represented a dramatic pedagogical change. We will see below that in spite of worthwhile experiments, learning objects and open educational resources are still in their infancy. They hold promises for educational innovation though. The cost of e-learning Has e-learning lived up its promises in terms of cost-efficiency? Here again, not if one looks at the most radical promises: as noted above, virtual universities have not replaced brick and mortars and saved the cost of expensive building investments and maintenance; digital libraries have supplemented rather than replaced physical ones; the codification and standardisation of teaching in a way that would allow less faculty or less qualified academics has not become the norm, nor have new online learning objects been invented to replace faculty altogether; finally, it has become clear that there was no once-for-all ICT investments and that the maintenance and upgrading costs of ICT facilities were actually important, contrary to the marginal cost of then replicating and diffusing information. Moreover, cost-efficiency has for many universities been a secondary goal compared to the challenge of developing innovative and high quality e-learning courses at many tertiary education institutions. Although the anking of cost-efficiency has increased betwe en 2002 and 2004 by 16%, 37% of respondents considered ââ¬Å"cutting teaching costs long-termâ⬠as a key rationale in the OBHE survey (OBHE, 2004)ââ¬âa small percentage compared to the two key rationales (over 90% of responses). Again, most universities consider e-learning materials and courses as a supplement to traditional class-room or lecture activities rather than a substitute. The predominance of web dependent and mixed modes of e-learning makes the assessment of the costs and benefits of e-learning investments more difficult to evaluate as they become part of the on-campus experience. It is striking that the institutions participating in the CERI survey on e-learning had no systematic data on their e-learning costs (OECD, 2005). In this context, and after the burst of the dot. om economy bubble that put out of business many e-learning operations (many never really started their operations though), identifying sustainable cost-efficient models for e-learning investme nts in tertiary education has become critical. There are examples of cost-efficient models ââ¬Å"outsideâ⬠the traditional colleges and universities though. Virtual tertiary education institutions as e. g. the Catalonia Virtual University have a cost advantage as they are developing e-learning material from scratch and not ââ¬Å"building ontoâ⬠a physical camp. The Open University in the UK which is gradually moving from a traditional distance learning courses using books, video cassettes, and CD-ROMs to online courses has reported that their costs per student are one third of the average cost for similar on-campus programmes in the UK. Fixed capital costs are lower and it is easier to align staffing structures to e-learning processes than at ââ¬Å"traditionalâ⬠universities. The e-learning activities of Phoenix University, which is a private for-profit university mainly for adult students, is also seen as cost-effective. Its business model is based on ââ¬Å"standardised teachingâ⬠, relatively small on-line class size, and use of proven low-tech e-learning technologies (inducing lower costs than more sophisticated technologies). Much of the faculty staff at Phoenix University is often hired part time and having jobs at other tertiary education institutions, which often implies that staff development costs are lower at Phoenix University than other tertiary education institutions. E-learning investments in tertiary education can be cost-effective, but it depends on the business model, the profile and number of students and topics (cost-effectiveness has been demonstrated in some cases in large undergraduate science classes (Harley, 2003), and initial development costs. The calculations also depend on whether student opportunity costs are taken into account. The initial costs for e-learning development are often high (e. g. infrastructure, creating course material from scratch, experimentation, new kind of staff/units, immature technologies, etc. ). In order to ensure that e-learning investments are cost efficient, e-learning activities may need to substitute parts of the on-campus teaching activities (rather than duplication). Educational innovations, like learning objects, could for example allow supporting the re-use and sharing of e-learning materials. Although data is lacking on cost-efficiency, at this stage there is little evidence that e-learning has led to more cost efficiency in tertiary education. Failures have been more numerous than success stories, although the latter document the possible sustainability of e-learning. The adoption of ICTs for administrating tertiary education institutions has probably been the main source of cost efficiency in the tertiary sector, like in other economic sectors. Conclusion: the e-learning adoption cycles So, has e-learning lived up to its promises? This is probably true as far as it holds promises for incremental improvement, including an increased access and quality of the learning experienceââ¬âa kind of change whose importance should not be underestimated. As for radical innovation, the answer is rather: not yet. So far, e-learning has induced a quiet rather than a radical revolution of tertiary education. Perhaps e-learning will follow the same development path in tertiary education as other innovations that first begin with experiments, then expand to a group of early adopters before becoming commonplace. Zemsky and Massy (2004) have proposed a possible ââ¬Å"e-learning innovationââ¬â¢s S-curveâ⬠divided into four distinctive but often overlapping adoption cycles that help understand the current development of e-learning, and, possibly, its future challenges. The cycles include: )Enhancements to traditional course/program configurations, which inject new materials into teaching and learning processes without c hanging the basic mode of instruction. Examples include e-mail, student access to information on the Internet, and the use of multimedia (e. g. PowerPoint) and simple simulations; 2)Use of course management systems, which enable faculty and students to interact more efficiently (e. g. Blackboard or WebCT). They provide better communication with and among students, quick access to course materials, and support for administrating and grading examinations; 3)Imported course objects, which enable the faculty to embed a richer variety of materials into their courses than is possible with traditional ââ¬Å"do it yourselfâ⬠learning devices. Examples range from compressed video presentations to complex interactive simulations including the increased use of ââ¬Å"learning objectsâ⬠; 4)New course/program configurations, which result when faculty and their institutions reengineer teaching and learning activities to take full advantage of new ICTs. The new configurations focus on active learning and combine face-to-face, virtual, synchronous, and asynchronous interaction and learning in novel ways. They also require faculty and students to adopt new roles ââ¬â with each other and with the technology and support staff. The overview of current e-learning adoption shows that most tertiary education institutions in OECD countries can largely be located in cycles one and/or two. These first two cycles have largely built upon and reinforced one another. However, they have not fundamentally changed the way teaching and learning is pursued at the large majority of institutions. Their momentum has not automatically transferred to either increasing use and dissemination of learning objects or to the use of new course/program configurations (e-learning cycles three and four). Cycles 3 and 4 correspond to changes remodelling more radically teaching and learning. While some experimentations underway give us some idea of where they could head, they are still in their infancy. The third cycle corresponds to the creation of ââ¬Å"learning objectsâ⬠that can potentially offer an efficient approach to the development of e-learning materials (i. e. reduced faculty time, lower cost, higher quality materials), although many issues remain (e. g. opyright, lack of incentives for faculty to create, the range of actors in and ââ¬Ëlocationââ¬â¢ of the creative process, lack of standardisation and interoperability of e-learning software). The learning objects model implies material/course development that departs from the ââ¬Å"craft-modelâ⬠where the indivi dual professor is responsible for the majority of work. Instead it is a model where the course is assembled largely by or from third-party material. Besides the technical and organisational challenges of developing learning objects, there are also considerable pedagogical challenges using them. Some argue that learning is so contextually based that the breaking up of the learning experience into defined objects is destructive for the learning process. Evidence from the Open Learning Initiative at the Carnegie Mellon University suggests that effective e-learning courses are often facilitated by having a ââ¬Ëthemeââ¬â¢ that runs throughout the course, which might be difficult to obtain with the notion of decontextualised learning objects (Smith and Thille, 2004). Therefore, much more research and development is needed to ensure pedagogical effectiveness of the learning objects model. For faculty members to rely on others for their material will also need a cultural change as it would probably often be considered today as demonstrating ââ¬Å"inferiorityâ⬠. Wide use of learning objects in tertiary education will therefore only occur if major changes in working habits and attitudes of faculty are possible. The development of learning objects is very much in its initial phase. This is illustrated by the use of the public available learning objects repositories as e. g. MERLOT (Multimedia Educational Resource for Learning and Online Teaching). The basic idea behind the MERLOT repository was to create a readily available, low-cost, web-based service to which experimenters could post their learning objects and from which interested practitioners could rate and download objects for use in their courses. While there has been a tremendous growth in the number of learning objects made available by MERLOT, there has been very little interest to use what other colleagues had made available and consequently little effort in terms of rating othersââ¬â¢ learning objects. This can however be seen as the first steps towards the construction of knowledge communities in education. Despite the premature stage of learning objects and the large number of obstacles to overcome, some standard form of learning objects will probably emerge and gain importance in the development of e-learning in tertiary education as well as in other education sectors. Very few institutions have reached the fourth e-learning adoption cycle at an institution wide scale. There are however institutions which are clearly experimenting with new ways of using ICTs that change the traditional organisation and pedagogy of tertiary education. One such example is the previously mentioned Open Learning Initiative at the Carnegie Mellon University. The use of cognitive and learning sciences to produce high quality e-learning courses into online learning practices is at the core of this initiative (Smith and Thille, 2004). As there is no generic e-learning pedagogy, the aim is to design as ââ¬Å"cognitive informedâ⬠e-learning courses as possible. The establishment and implementation procedures for routine evaluation of the courses and the use of formative assessment for corrections and iterative improvements are part of the e-learning course development. The development of the e-learning courses often rely on teamwork including faculty from multiple disciplines, web designers, cognitive scientists, project managers, learning designers, and evaluators. The key question for any project like the Open Learning Initiative attempting a combination of open access to free content, and a fee-for-service model for students using the courses in a degree granting setting is its sustainability. This initiative could not have been realised without significant voluntary contributions from private foundations and a major research grant from the National Science Foundation to start the Pittsburgh Science of Learning Center. The next section will address the challenges for the adoption of these third and fourth adoption cycles. III. Challenges for the further development of e-learning in tertiary education: what sustainable innovation model? The aim of this final section is to identify and reflect on some of the key issues that would need to be considered in a systematic way for e-learning to develop further and become a deeper driver of innovation in tertiary education. If the vast majority of colleges and universities are to embrace the third and fourth e-learning adoption cycles, a sustainable innovation and investment model will have to be developed. A first challenge lies indeed in the development of sustainable e-learning innovation models which go beyond using e-learning as an add-on to traditional forms of teaching and learning in tertiary education but rather invent new, useful and better pedagogic innovations partly substituting traditional face-to-face teaching. This will require a broad willingness of these institutions to search for new combinations of input of faculty, facilities and technology and new ways of organising their teaching activities. A second challenge lies in the development of a realistic model for investment in e-learning that would stimulate the participation of faculty and other stakeholders and be financially sustainable, which is not straightforward given that there is little systematic knowledge on the real costs and benefits of e-learning investments in tertiary education. However, like for ICT investments in other sectors, the cost-effectiveness of e-learning investments will depend on whether new organisational and knowledge management practices are adopted. It might indeed be more difficult to provide the ââ¬Å"softerâ⬠social, organisational and legal changes in tertiary education than the technological infrastructures necessary to fully embrace the advantages of e-learning. This section emphasises partnerships and networks as a possible way forward for further investment, product development and innovation diffusion in e-learning. There are many examples where tertiary education institutions seek to share the costs of e-learning development through partnerships and networking. Partnership and network building are also useful for having access to new knowledge, to learn from others experience and exchange information about the latest developments in e-learning and they can involve many different organisations as e. g. traditional colleges and universities, virtual universities, libraries, for-profit ICT and training companies from different sectors etc. These activities can range from sharing material, joint technology and software development, joint research and development, joint marketing, joint training, connectivity, etc. and can be sub-national, national and international (OECD, 2004b; Cunningham and al. , 2000). After showing the importance (and challenges) for universities to engaging their faculty in e-learning, we will turn to an innovative practice exemplifying the potential power of partnerships and networks: Open Educational Resources (OER). They will indeed most likely have significant implications for the way e-learning activities will develop over the coming years in tertiary education. Engaging universities and faculty in e-learning In most OECD countries the question is no longer whether or not tertiary education institutions should invest in e-learning. Because of the competition between institutions and student demand for easy access to courseware material and flexible learning environments, most tertiary education institutions willing to deliver quality teaching are bound to invest in e-learning. As we have seen, the large majority of institutions are now embracing e-learning adoption cycles one and two, which are basically about providing the students with better access to learning and course material and facilitating the electronic communication between students and teachers. Again, only very few institutions and faculty are however systematically exploring and producing re-usable learning material and objects (third cycle) or have taken full advantage of new ICTs with focus on active learning that combines face-to-face, virtual, synchronous, and asynchronous interaction and learning in novel ways (fourth cycle). The latter approach would require faculty and students to adopt new roles ââ¬â with each other and with the technology and support staff. While ICTs offer powerful new instruments for innovation, tertiary education institutions are generally decentralised institutions where individual faculty often has the sole responsibility for teaching courses and delivering course material. Adoption of the third and especially the fourth e-learning cycle would imply changing to more collaborative ways of organising and producing teaching material. Faculty members would in many cases have to collaborate with a whole range of new staff as e. g. course managers, web designers, instructional/pedagogical designers, cognitive scientist etc. to produce course material. This could lead to resistance from ââ¬Å"traditionalâ⬠faculty arguing that current teaching practices have proved its value for centuries and there is no need to change them to new pedagogical and teaching methods, which have hardly proven their efficiency yet. Moreover, promotion of faculty and funding allocations in universities are often linked to research activities rather than teaching activities, often seen as less prestigious. Faculty members have therefore often relatively few incentives to invest their time in e-learning activities. The adoption of new ways of teaching and learning at tertiary education institutions through ICTs can therefore create organisational conflicts and tensions. New organisational innovations, new knowledge management practices, and more team working are therefore necessary conditions for tertiary education institutions to be able to move to e-learning adoption cycles three and four. The CERI study on e-learning case studies in post-secondary education has identified a number of lessons learnt by institutions that are in the forefront of e-learning development (OECD, 2005): More strategic e-learning planning at the institutional or faculty level and to tie this to the overall goals of the institution is needed; â⬠¢A paradigm shift in the way academics think of university teaching would be necessary, e. g. a shift away from ââ¬Ëscepticism about the use of technologies in e ducationââ¬â¢ and ââ¬Ëteacher-centred cultureââ¬â¢ towards ââ¬Ëa role as a facilitator of learning processesââ¬â¢, ââ¬Ëteam workerââ¬â¢, and ââ¬Ëlearner-centred cultureââ¬â¢; â⬠¢Targeted e-learning training relevant for the facultyââ¬â¢s teaching programme as well as ownership of the development process of new e-learning material by academics is also necessary. There is no one-best-way or trajectory for e-learning development at tertiary education institutions. But it might prove more difficult to provide the ââ¬Å"softerâ⬠social, organisational and legal changes in tertiary education than provide the technological infrastructures necessary to fully embrace the advantages of e-learning (David, 2004). It will depend on a whole range of factors not necessarily related to the development of e-learning including: â⬠¢Changes in the funding of tertiary education and in particular e-learning funding; â⬠¢Student demography; â⬠¢Regulatory and legal frameworks; â⬠¢Competition between traditional tertiary education institution themselves and with new private providers; â⬠¢Internationalisation including the possibility of servicing foreign students living abroad; and not the least to the extent to which students will want to use the new opportunities for new and flexible ways of learning. Many tertiary education students would possibly prefer to have some kind of ââ¬Å"mixed modelâ⬠learning choice involving a whole range of different learning opportunities and forms combining face-to-face, virtual, synchronous, and asynchronous interaction and learning. A possible way forward: Open Educational Resources Open Educational Resources appear as a potentially innovative practice that gives a good example of the current opportunities and challenges offered by ICTs in order to trigger radical pedagogic innovations. Digitalisation and the potential for instant, low-cost global communication have opened tremendous new opportunities for the dissemination and use of learning material. This has spurred an increased number of freely accessible OER initiatives on the Internet including 1) open courseware ; 2) open software tools (e. g. learning management systems); 3) open material for capacity building of faculty staff ; 4) repositories of learning objects ; 5) and free educational e-learning courses. At the same time, there are now more realistic expectations of the commercial e-learning opportunities in tertiary education. The OER initiatives are a relatively new phenomenon in tertiary education largely made possible by the use of ICTs. The open sharing of oneââ¬â¢s educational resources implies that knowledge is made freely available on non-commercial terms sometimes in the framework of users and doers communities. In such communities the innovation impact is greater when it is shared: the users are freely revealing their knowledge and, thus work cooperatively. These communities are often not able to extract economic revenues directly from the knowledge and information goods they are producing and the ââ¬Å"sharingâ⬠of these good are not steered by market mechanisms. Instead they have specific reward systems often designed to give some kind of credit to inventors without exclusivity rights. In the case of open science, the reward system is collegial reputation, where there is a need to be identified and recognised as ââ¬Å"the one who discoveredâ⬠which gives incentives for the faculty to publish new knowledge quickly and completely (Dasgupta and David, 1994). The main motivation or incentive for people to make OER material available freely is that the material might be adopted by others and maybe even is modified and improved. Reputation is therefore also a key motivation factor in ââ¬Å"OER communitiesâ⬠. Being part of such a user community gives access to knowledge and information from others but it also implies that one has a ââ¬Å"moralâ⬠obligation to share oneââ¬â¢s own information. Inventors of OER can benefit from increased ââ¬Å"free distributionâ⬠or from distribution at very low marginal costs. A direct result of free revealing is to increase the diffusion of that innovation relative to conditions in which it is licensed or kept secret. If an innovation is widely used it would initiate and develop standards which could be advantageously used even by rivals. The Sakai project has, for example, an interest in making their open software tools available for many colleges and universities and have therefore set a relatively low entry amount for additional colleges and universities wishing to have access to the software tools that they are developing. The financial sustainability of OER initiatives is a key issue. Many initiatives are sponsored by private foundations, public funding or paid by the institutions themselves. In general, the social value of knowledge and information tools increases to the degree that they can be shared with and used by others. The individual faculty member or institution providing social value might not be able to sustain the costs of providing OER material freely on the Internet in the long term. It is therefore important to find revenues to sustain these activities. It might e. g. be possible to charge and to take copyrights on part of the knowledge and information activities springing out of the OER initiatives. Finding better ways of sharing and re-using e-learning material (see the previous mentioned discussion on learning objects) might also trigger off revenues. It is also important to find new ways for the users of OER to be ââ¬Å"advisedâ⬠of the quality of the learning material stored in open repositories. The wealth of learning material is enormous on the Internet and if there is little or no guidance of the quality of the learning material, users will be tempted to look for existing brands and known quality. There is no golden standard or method of identifying quality of learning material in tertiary education on the Internet as is the case with quality identification within tertiary education as a whole. The intentions behind the MERLOT learning object repository was to have the user community rating the quality and usability of the learning objects made freely available. In reality very few users have taken the time and effort to evaluate other learning objects. There is little doubt that the generic lack of a review process or quality assessment system is a serious issue and is hindering increased uptake and usage of OER. User commentary, branding, peer reviews or user communities evaluating the quality and usefulness of the OER might be possible ways forward. Another important challenge is to adapt ââ¬Å"global OER initiativesâ⬠to local needs and to provide a dialogue between the doers and users of the OER. Lack of cultural and language sensitivities might be an important barrier to the receptiveness of the users. Training initiatives for users to be able to apply course material and/or software might be a way to reach potential users. Also important will be the choice (using widely agreed standards), maintenance, and user access to the technologies chosen for the OER. There is a huge task in better understanding the users of OER. Only very few and hardly conclusive surveys on the users of OER are available . There is a high need to better understand the demand and the users of OER. A key issue is who owns the e-learning material developed by faculty. Is it the faculty or the institution? In many countries including the United States, the longstanding practice in tertiary education has been to allow the faculty the ownership of their lecture notes and classroom presentations. This practice has not always automatically been applied to e-learning course material. Some universities have adopted policies that share revenues from e-learning material produced by faculty. Other universities have adopted policies that apply institutional ownership only when the use of university resources is substantial (American Council of Education and EDUCAUSE, 2003). In any case, institutions and faculty groups must strive to maintain a policy that provides for the universityââ¬â¢s use of materials and simultaneously fosters and supports faculty innovation. It will be interesting to analyse how proprietary versus open e-learning initiatives will develop over the coming years in tertiary education. Their respective development will depend upon: How the copyright practices and rules for e-learning material will develop at tertiary education institutions; â⬠¢The extent to which innovative user communities will be built around OER initiatives; â⬠¢The extent to which learning objects models will prove to be successful; â⬠¢The extent to which new organ isational forms in teaching and learning at tertiary education institutions will crystallise; â⬠¢The demand for free versus ââ¬Å"fee-paidâ⬠e-learning material; â⬠¢The role of private companies in promoting e-learning investments etc. It is however likely that proprietary e-learning initiatives will not dominate or take over open e-learning initiatives or vice versa. The two approaches will more likely develop side by side sometimes in competition but also being able to mutually reinforce each other through new innovations and market opportunities. Conclusion There are many critical issues surrounding e-learning in tertiary education that need to be addressed in order to fulfil objectives such as widening access to educational opportunities; enhancing the quality of learning; and reducing the cost of tertiary education. E-learning is, in all its forms, a relatively recent phenomenon in tertiary education that has largely not radically transformed teaching and learning practices nor significantly changed the access, costs, and quality of tertiary education. As we have shown, e-learning has grown at a rapid pace and has enhanced the overall learning and teaching experience. While it has not lived up to its most ambitious promises to stem radical innovations in the pedagogic and organisational models of the tertiary education, it has quietly enhanced and improved the traditional learning processes. Most institutions are thus currently in the early phase of e-learning adoption, characterised by important enhancements of the learning process but no radical change in learning and teaching. Like other innovations, they might however live up to their more radical promises in the future and really lead to the inventions of new ways of teaching, learning and interacting within a knowledge community constituted of learners and teachers. In order to head towards these advances innovation cycles, a sustainable innovation and investment model will have to be developed. While a first challenge will be technical, this will also require a broad willingness of tertiary education institutions to search for new combinations of input of faculty, facilities and technology and new ways of organising their teaching activities. Like for ICT investments in other sectors, the cost-effectiveness of e-learning investments will depend on whether new organisational and knowledge management practices are adopted. Experiments are already underway that make us aware of these challenges, but also of the opportunities and lasting promises of e-learning in tertiary education. References Allen, I. E. and Seaman, J. (2003), Sizing the opportunity. The Quality and Extent of Online Education in the United States, 2002 and 2003, The Sloan Consortium. American Council on Education and EDUCAUSE (2003), Distributed Education: Challenges, Choices and a New Environment, Washington DC. Atkins, D. E. , Droegemeier, K. K. , Feldman, S. I. , Garcia-Molina, H. , Klein, M. L. , Messerschmitt, D. G. , Messina, P. , Ostriker, J. P. , Wright, M. H. , Final Report of the NSF Blue Ribbon Advisory Panel on Cyberinfrastructure, available at http://www. cise. nsf. gov/sci/reports/toc. cfm. February 2003. Bates, A. W. (1995), Technology, e-learning and Distance Education, Routledge, London/New York. Boyer, R. 2002), La croissance, debut de siecle. De lââ¬â¢octet au gene, Albin Michel, Paris; English translation: The Future of Economic Growth: As New Becomes Old, Edward Elgar, Cheltenham, UK, 2004. Cunningham, S. , Ryan, Y. , Stedman, L. , Tapsall, S. , Bagdon, S. , Flew, T. , Coaldrake, P. (2000), The Business of Borderless Education, Australian Department of Education, Training and Youth Affairs, Canberra. Dasgupta, P. and P. A. David (1994), ââ¬Å"Towards a New Economics of Scienceâ⬠, Research Policy, 23(5). David, P. A (2004), Toward a Cyberinfrastructure from Enhanced Scientific Collaboration: Providing its ââ¬ËSoftââ¬â¢ Foundations May be the Hardest Threat, Oxford Internet Institute. Foray, D. 2004), The Economics of Knowledge, MIT Press, Cambridge, USA. Harley, D. (2003), Costs, Culture, and Complexity: An Analysis of Technology Enhancements in a Large Lecture Course of UC Berkeley, Center for Studies in Higher Education. Paper CSHE3-03, Berkeley University. Hutchins, E. (1995), Cognition in the Wild, MIT Press, Cambridge, USA. Nelson, R. (2000), ââ¬Å"Knowledge and Innovation Systemsâ⬠, in OECD, Knowledge Management in the Learning Society, Paris. Observatory for Borderless Higher Education (2002), Online Learning in Commonwealth Universities ââ¬â Results from the Observatory 2002 Survey, Londo n. OECD (2003), New Challenges for Educational Research, OECD, Paris. OECD (2004a), Innovation in the Knowledge Economy ââ¬â Implications for Education and Learning, Paris. OECD (2004b), Internationalisation and Trade in Higher Education. Opportunities and Challenges, Paris. OECD (2005 forthcoming), E-learning Case Studies in Post-Secondary Education, Paris. Smith, J. M. and C. Thille (2004), The Open Learning Initiative ââ¬â Cognitively Informed e-learning, The Observatory on Borderless Higher Education, London. World Bank (2003), Constructing Knowledge Societies: New Challenges for Tertiary Education, The World Bank, Washington D. C. Zemsky, R. and W. F. Massy (2004), Thwarted Innovation ââ¬â What Happened to e-learning and Why, The Learning Alliance, Pennsylvania University. How to cite The Impact of Ict on Tertiary Education, Essay examples
Subscribe to:
Posts (Atom)